
final_report

May 29, 2024

0.1 DATA260P Project 1: Comparing Sorting Algorithms
Connor McManigal and Peyton Politewicz

[1]: import pandas as pd
import numpy as np

tr_df = pd.read_csv('tr_table.csv')
as_df = pd.read_csv('as_table.csv')

def get_theoretical_big_o(algo):
if algo in ['Merge', 'Simple Tim']:

return 'n log n'
elif algo in ['Quick', 'Insertion', 'Shell731', 'Shell1000', 'Binary␣

↪Insertion']:
return 'n^2'

elif algo == 'Radix':
return 'nd'

elif algo == 'Bucket':
return 'n'

else:
return 'Unknown' # Just in case I mess up

tr_df['Theoretical Big-O'] = tr_df['Algo'].apply(get_theoretical_big_o)
as_df['Theoretical Big-O'] = as_df['Algo'].apply(get_theoretical_big_o)

[2]: print(tr_df)

Algo Data Size Observed Runtime Ratio Emp Big-O \
0 Merge 1000 0.001916 NaN NaN
1 Merge 2000 0.004056 2.117361 1.082267
2 Merge 4000 0.008482 2.091213 1.064340
3 Merge 8000 0.018181 2.143459 1.099941
4 Merge 16000 0.038370 2.110502 1.077586
5 Quick 1000 0.001324 NaN NaN
6 Quick 2000 0.003008 2.272121 1.184039
7 Quick 4000 0.006822 2.267949 1.181388
8 Quick 8000 0.016247 2.381692 1.251987
9 Quick 16000 0.041129 2.531412 1.339942
10 Insertion 1000 0.018981 NaN NaN

1

11 Insertion 2000 0.076569 4.033956 2.012195
12 Insertion 4000 0.299134 3.906733 1.965963
13 Insertion 8000 1.224779 4.094420 2.033659
14 Insertion 16000 4.817695 3.933522 1.975822
15 Shell731 1000 0.007089 NaN NaN
16 Shell731 2000 0.026349 3.716697 1.894021
17 Shell731 4000 0.100089 3.798601 1.925468
18 Shell731 8000 0.386434 3.860910 1.948941
19 Shell731 16000 1.547525 4.004635 2.001671
20 Shell1000 1000 0.005101 NaN NaN
21 Shell1000 2000 0.013417 2.630007 1.395067
22 Shell1000 4000 0.036741 2.738504 1.453388
23 Shell1000 8000 0.099846 2.717555 1.442309
24 Shell1000 16000 0.281685 2.821187 1.496302
25 Bucket 1000 0.000217 NaN NaN
26 Bucket 2000 0.000405 1.866606 0.900418
27 Bucket 4000 0.000733 1.809985 0.855978
28 Bucket 8000 0.001267 1.727493 0.788679
29 Bucket 16000 0.002480 1.958157 0.969497
30 Radix 1000 0.001246 NaN NaN
31 Radix 2000 0.002378 1.908704 0.932593
32 Radix 4000 0.004622 1.943660 0.958776
33 Radix 8000 0.009829 2.126646 1.088580
34 Radix 16000 0.019688 2.003031 1.002185
35 Binary Insertion 1000 0.001555 NaN NaN
36 Binary Insertion 2000 0.004537 2.918067 1.545013
37 Binary Insertion 4000 0.016499 3.637011 1.862753
38 Binary Insertion 8000 0.066804 4.048897 2.017529
39 Binary Insertion 16000 0.284079 4.252426 2.088286
40 Simple Tim 1000 0.001462 NaN NaN
41 Simple Tim 2000 0.003102 2.122537 1.085790
42 Simple Tim 4000 0.006723 2.167151 1.115800
43 Simple Tim 8000 0.016296 2.423932 1.277349
44 Simple Tim 16000 0.031620 1.940303 0.956282

Theoretical Big-O
0 n log n
1 n log n
2 n log n
3 n log n
4 n log n
5 n^2
6 n^2
7 n^2
8 n^2
9 n^2
10 n^2
11 n^2

2

12 n^2
13 n^2
14 n^2
15 n^2
16 n^2
17 n^2
18 n^2
19 n^2
20 n^2
21 n^2
22 n^2
23 n^2
24 n^2
25 n
26 n
27 n
28 n
29 n
30 nd
31 nd
32 nd
33 nd
34 nd
35 n^2
36 n^2
37 n^2
38 n^2
39 n^2
40 n log n
41 n log n
42 n log n
43 n log n
44 n log n

0.2 Experimental Time Analysis
0.2.1 MergeSort Time Analysis

3

0.2.2 QuickSort Time Analysis

4

0.2.3 InsertionSort Time Analysis

5

0.2.4 ShellSort Time Analysis

6

7

0.2.5 BucketSort Time Analysis

8

0.2.6 RadixSort Time Analysis

0.2.7 BinaryInsertionSort Time Analysis

I wrote the BinaryInsertionSort algorithm in an effort to improve runtime from the slow and clunky
InsertionSort implementation(it appeared to be the slowest of our algorithms). After running
InsertionSort and observing ~4 second runtimes on the larger data size(16000), I wanted to find an

9

approach that could drastically enhance its performance on large dataset sizes. I used two helper
functions, one to perform the binary search to find the correct position to insert an element into
the sorted subarray(binary_search()) and the other to execute the sorting logic in conjunction with
the binary search mechanism(sort()). After completing my implementation for BinaryInsertionSort,
both the truly random and almost sorted data of size 16000 saw immense improvements: roughly
~4 seconds runtimes on truly random and almost sorted data of size 16000 with InsertionSort to
under 0.4 seconds with BinaryInsertionSort. BinaryInsertionSort roughly improved runtime from
InsertionSort by around 90%. (Connor)

BinaryInsertionSort Natural Language PseudoCode:

Input: truly random generated array or almost sorted array of numbers Output: array in ascending
order

1. (sort()) For each element (starting from the second element) in the array:
1.a Set "current" to the element at the current index of the loop
1.b Set "j" to binary_search call to find the position to insert "current" into sorted subarray

1.bi (binary_search()) While the "start" index is less than the "end" index:
1.bi(a) Calculate the "midpoint" index or halfway point of "start" and "end"
1.bi(b) If the value of the "midpoint" is less than the target "value":

1.bi(bi) Set the "start" index to the midpoint plus 1 "mid + 1"
1.bi(c) Else:

1.bi(ci) Set the "end" index to the "midpoint" index
1.bii Return the "start" index as the spot for which the "value" should be inserted

1.c Shift elements: "data" index "i - 1" to "j + 1" to make room for the "current" element
1.d Place the "current" element at index "j" of "data"

2. Return the sorted array "data"

• Input for binary_search(): sorted array “data”, value to be searched for “value”(“current” in
sort()), start index of array “start”, and end idex of array “end”

• Output for binary_search(): index where target value should be inserted

BinaryInsertionSort PsuedoCode:

class BinaryInsertionSort(CustomSort1):
def __init__(self,):

self.time = 0

def binary_search(self, data to be sorted, target value for insertion, start index, end index):
while start index < end index:

midpoint index = (start index + end index) // 2
if data to be sorted[midpoint index] < target value:

start index = midpoint + 1
else:

end index = midpoint index
return start index

def sort(self, data to be sorted):
for index i from 1 to length(data) - 1:

current value = data to be sorted[index i]
index j = binary_search(data to be sorted, current value, 0, index i)

10

data to be sorted[index j + 1: index i + 1] = data to be sorted[index j:index i]
data to be sorted[index j] = current value

return data sorted

Let’s take a look at the runtime improvements from InsertionSort to BinaryInsertionSort.

[3]: bis_df = tr_df.loc[tr_df['Algo'] == 'Binary Insertion', ['Data Size', 'Observed␣
↪Runtime']].copy()

bis_df.rename(columns={'Observed Runtime': 'BIS Runtime'}, inplace=True)

insertion_df = tr_df.loc[tr_df['Algo'] == 'Insertion', ['Data Size', 'Observed␣
↪Runtime']].copy()

insertion_df.rename(columns={'Observed Runtime': 'Insertion Runtime'},␣
↪inplace=True)

comparison_df = pd.merge(bis_df, insertion_df, on='Data Size')
comparison_df['Runtime Ratio (BIS / Insertion)'] = comparison_df['BIS Runtime']␣

↪/ comparison_df['Insertion Runtime']
comparison_df.set_index('Data Size', inplace=True)

print("Comparison of BinaryInsertionSort to InsertionSort runtime on True␣
↪Random data:")

print(comparison_df)

Comparison of BinaryInsertionSort to InsertionSort runtime on True Random data:
BIS Runtime Insertion Runtime Runtime Ratio (BIS / Insertion)

Data Size
1000 0.001555 0.018981 0.081904
2000 0.004537 0.076569 0.059247
4000 0.016499 0.299134 0.055157
8000 0.066804 1.224779 0.054544
16000 0.284079 4.817695 0.058966

[4]: bis_df = as_df.loc[as_df['Algo'] == 'Binary Insertion', ['Data Size', 'Observed␣
↪Runtime']].copy()

bis_df.rename(columns={'Observed Runtime': 'BIS Runtime'}, inplace=True)

insertion_df = as_df.loc[as_df['Algo'] == 'Insertion', ['Data Size', 'Observed␣
↪Runtime']].copy()

insertion_df.rename(columns={'Observed Runtime': 'Insertion Runtime'},␣
↪inplace=True)

comparison_df = pd.merge(bis_df, insertion_df, on='Data Size')
comparison_df['Runtime Ratio (BIS / Insertion)'] = comparison_df['BIS Runtime']␣

↪/ comparison_df['Insertion Runtime']
comparison_df.set_index('Data Size', inplace=True)

11

print("Comparison of BinaryInsertionSort to InsertionSort runtime on True␣
↪Random data:")

print(comparison_df)

Comparison of BinaryInsertionSort to InsertionSort runtime on True Random data:
BIS Runtime Insertion Runtime Runtime Ratio (BIS / Insertion)

Data Size
1000 0.001490 0.018644 0.079927
2000 0.004535 0.077796 0.058288
4000 0.016692 0.311041 0.053665
8000 0.066929 1.244236 0.053791
16000 0.283342 4.964963 0.057068

As we can see, these results clearly illustrate the substantial runtime improvements achieved by
BinaryInsertionSort. Across both true random and almost sorted inputs, BinaryInsertionSort con-
sistently demonstrated lower mean runtimes compared to InsertionSort. The above two tables show
that as the size of the input data increases, the runtime ratio of BinaryInsertionSort to InsertionSort
remains relatively stable, ranging from 0.09 to 0.13. These ratios reflect that BinaryInsertionSort
improved run times by 88-92%. This illustrates how the combination of insertion sort and binary
search is more efficient in terms of runtime than InsertionSort alone(regardless of the data size).
By halving the search space with each comparison, it reduced the total number of comparisons
needed to find the insertion index, thus leading to faster runtimes.

12

0.2.8 Simplified Timsort Time Analysis

Timsort was an appealing discovery during my research into iterative improvements upon these
sorting algorithms, as Timsort’s most robust and feature-complete version is actually used at the
core of Python’s built-in sort() and sorted() functions. I sought to duplicate at least some of
its functionality - in particular, its utilization of building ‘runs’ with insertion sort, that are then
brought together with mergesort. This ‘run’ component is the only aspect of its robustness I sought
to integrate for performance gains in our relatively straightforward use case.

1 Timsort Pseudocode
Class Timsort: Initialize with some minimum length of each ‘run’: Set MIN_RUN = 32

'sort' method, taking parameter 'data':
Call recursive timsort_basic method, passing 'data'
Return sorted 'data' upon completion of recursive sort

'timsort_basic' method with parameter 'data':
Set 'n' to the length of 'data'
Create runs of at least MIN_RUN size using 'insertion_sort'

Initialize 'size' to MIN_RUN
While 'size' is less than 'n' (merge the array, iteratively doubling the size of chunks to be merged):

For each 'left' starting from 0, stepping by '2 * size':
Calculate midpoint 'mid' as minimum of 'n - 1' and 'left + size - 1'
Calculate 'right' as minimum of '(left + 2 * size - 1)' and '(n - 1)'
If 'mid' is less than 'right', merge the current sections

Double the 'size'

'insertion_sort' method with parameters 'data', 'left', 'right':
For each position 'i' in range from 'left + 1' to 'right':

13

Set 'key' to the value of 'data' at index 'i'
Initialize 'j' to 'i - 1'
While 'j' is greater than or equal to 'left' and 'data[j]' is greater than 'key':

Move 'data[j]' one position to the right
Decrease 'j' by 1

Place 'key' in the correct sorted position

'merge' method with parameters 'data', 'left', 'mid', 'right':
Initialize an empty list 'temp'
Set 'i' to 'left' and 'j' to 'mid + 1'
While either 'i' is less than or equal to 'mid' or 'j' is less than or equal to 'right':

Compare elements from both halves and append the smaller one to 'temp'
Increment 'i' or 'j' accordingly

Append any remaining elements from either half to 'temp'
Copy 'temp' back into 'data' starting from index 'left'

Below, let’s look at how this simplified timsort improves upon mergesort performance.

[5]: simple_tim_df = tr_df.loc[tr_df['Algo'] == 'Simple Tim', ['Data Size',␣
↪'Observed Runtime']].copy()

simple_tim_df.rename(columns={'Observed Runtime': 'Simple Tim Runtime'},␣
↪inplace=True)

merge_df = tr_df.loc[tr_df['Algo'] == 'Merge', ['Data Size', 'Observed␣
↪Runtime']].copy()

merge_df.rename(columns={'Observed Runtime': 'Merge Runtime'}, inplace=True)

comparison_df = pd.merge(simple_tim_df, merge_df, on='Data Size')

comparison_df['Runtime Ratio (Simple Tim / Merge)'] = comparison_df['Simple Tim␣
↪Runtime'] / comparison_df['Merge Runtime']

comparison_df.set_index('Data Size', inplace=True)

print("Comparison of Simple Timsort to MergeSort runtime on True Random data:")
print(comparison_df)

Comparison of Simple Timsort to MergeSort runtime on True Random data:
Simple Tim Runtime Merge Runtime \

Data Size
1000 0.001462 0.001916
2000 0.003102 0.004056
4000 0.006723 0.008482
8000 0.016296 0.018181
16000 0.031620 0.038370

Runtime Ratio (Simple Tim / Merge)
Data Size

14

1000 0.762998
2000 0.764863
4000 0.792637
8000 0.896354
16000 0.824069

[6]: simple_tim_df = as_df.loc[as_df['Algo'] == 'Simple Tim', ['Data Size',␣
↪'Observed Runtime']].copy()

simple_tim_df.rename(columns={'Observed Runtime': 'Simple Tim Runtime'},␣
↪inplace=True)

merge_df = as_df.loc[as_df['Algo'] == 'Merge', ['Data Size', 'Observed␣
↪Runtime']].copy()

merge_df.rename(columns={'Observed Runtime': 'Merge Runtime'}, inplace=True)

comparison_df = pd.merge(simple_tim_df, merge_df, on='Data Size')

comparison_df['Runtime Ratio (Simple Tim / Merge)'] = comparison_df['Simple Tim␣
↪Runtime'] / comparison_df['Merge Runtime']

comparison_df.set_index('Data Size', inplace=True)

print("Comparison of Simple Timsort to MergeSort runtime on Almost-sorted data:
↪")

print(comparison_df)

Comparison of Simple Timsort to MergeSort runtime on Almost-sorted data:
Simple Tim Runtime Merge Runtime \

Data Size
1000 0.001088 0.001372
2000 0.002509 0.003013
4000 0.005462 0.006403
8000 0.011643 0.013497
16000 0.025603 0.028850

Runtime Ratio (Simple Tim / Merge)
Data Size
1000 0.793026
2000 0.832756
4000 0.853102
8000 0.862636
16000 0.887475

2 Simple Timsort Time Analysis
We can see that this simple implementation of Timsort provides a modest runtime improvement
over MergeSort at the data sizes under consideration. While the performance delta is shrinking as n

15

grows (from approximately a 20% improvement at n = 1000, to a 12% improvement at n = 16,000),
this could be potentially be mitigated by adjusting Simple Timsort’s starting size of calculated runs,
perhaps seeding it as a log-base-two value that scales depending on n. We also see that Timsort is
one of the algorithms that suffers a performance hit when working with almost-sorted data, likely
derived from the fact that it uses insertion sort as one of its internal mechanisms.

16

2.1 Comparative Time Analysis
For our comparative time analysis, let’s bring in some code and import results.

3 Ranking Table, per data size: True Random permutations

[6]: data_sizes = tr_df['Data Size'].unique()

Prepare an empty dict to hold the algorithms and their runtimes for each data␣
↪size

rankings_with_runtime = {}

for size in data_sizes:
Filter rows matching current 'Data Size'
filtered_df = tr_df[tr_df['Data Size'] == size]
filtered_df = filtered_df.sort_values(by='Observed Runtime')

Combine 'Algo' and 'Observed Runtime' into a single string for each row
combined_info = filtered_df.apply(lambda x: "{} ({:.6f}s)".

↪format(x['Algo'], x['Observed Runtime']), axis=1).values

sorted_by_runtime = filtered_df.sort_values(by='Observed␣
↪Runtime')['Observed Runtime'].values

sorted_combined_info = [info for _,info in sorted(zip(sorted_by_runtime,␣
↪combined_info))]

rankings_with_runtime[size] = sorted_combined_info

max_length = max(len(v) for v in rankings_with_runtime.values())

for size in rankings_with_runtime:
rankings_with_runtime[size] = list(rankings_with_runtime[size]) + [None] *␣

↪(max_length - len(rankings_with_runtime[size]))

tr_ranked_with_runtime_df = pd.DataFrame(rankings_with_runtime)

tr_ranked_with_runtime_df.index += 1 # Ranking starts from 1

print("True Random execution time rankings, per data size.")
print(tr_ranked_with_runtime_df)

True Random execution time rankings, per data size.
1000 2000 \

1 Bucket (0.000217s) Bucket (0.000405s)
2 Radix (0.001246s) Radix (0.002378s)
3 Quick (0.001324s) Quick (0.003008s)
4 Simple Tim (0.001462s) Simple Tim (0.003102s)

17

5 Binary Insertion (0.001555s) Merge (0.004056s)
6 Merge (0.001916s) Binary Insertion (0.004537s)
7 Shell1000 (0.005101s) Shell1000 (0.013417s)
8 Shell731 (0.007089s) Shell731 (0.026349s)
9 Insertion (0.018981s) Insertion (0.076569s)

4000 8000 \
1 Bucket (0.000733s) Bucket (0.001267s)
2 Radix (0.004622s) Radix (0.009829s)
3 Simple Tim (0.006723s) Quick (0.016247s)
4 Quick (0.006822s) Simple Tim (0.016296s)
5 Merge (0.008482s) Merge (0.018181s)
6 Binary Insertion (0.016499s) Binary Insertion (0.066804s)
7 Shell1000 (0.036741s) Shell1000 (0.099846s)
8 Shell731 (0.100089s) Shell731 (0.386434s)
9 Insertion (0.299134s) Insertion (1.224779s)

16000
1 Bucket (0.002480s)
2 Radix (0.019688s)
3 Simple Tim (0.031620s)
4 Merge (0.038370s)
5 Quick (0.041129s)
6 Shell1000 (0.281685s)
7 Binary Insertion (0.284079s)
8 Shell731 (1.547525s)
9 Insertion (4.817695s)

4 Ranking Table, per data size: Almost-sorted permutations

[7]: data_sizes = as_df['Data Size'].unique()

Prepare an empty dict to hold the algorithms and their runtimes for each data␣
↪size

rankings_with_runtime = {}

for size in data_sizes:
Filter rows matching current 'Data Size'
filtered_df = as_df[as_df['Data Size'] == size]
filtered_df = filtered_df.sort_values(by='Observed Runtime')

Combine 'Algo' and 'Observed Runtime' into a single string for each row
combined_info = filtered_df.apply(lambda x: "{} ({:.6f}s)".

↪format(x['Algo'], x['Observed Runtime']), axis=1).values

18

sorted_by_runtime = filtered_df.sort_values(by='Observed␣
↪Runtime')['Observed Runtime'].values

sorted_combined_info = [info for _,info in sorted(zip(sorted_by_runtime,␣
↪combined_info))]

rankings_with_runtime[size] = sorted_combined_info

max_length = max(len(v) for v in rankings_with_runtime.values())

for size in rankings_with_runtime:
rankings_with_runtime[size] = list(rankings_with_runtime[size]) + [None] *␣

↪(max_length - len(rankings_with_runtime[size]))

as_ranked_with_runtime_df = pd.DataFrame(rankings_with_runtime)

as_ranked_with_runtime_df.index += 1 # Ranking starts from 1
print("Almost-sorted execution time rankings, per data size.")
print(as_ranked_with_runtime_df)

Almost-sorted execution time rankings, per data size.
1000 2000 \

1 Bucket (0.000216s) Bucket (0.000389s)
2 Radix (0.001208s) Radix (0.002332s)
3 Quick (0.001256s) Quick (0.002812s)
4 Simple Tim (0.001378s) Simple Tim (0.003078s)
5 Binary Insertion (0.001490s) Merge (0.004011s)
6 Merge (0.001846s) Binary Insertion (0.004535s)
7 Shell1000 (0.005031s) Shell1000 (0.013325s)
8 Shell731 (0.006848s) Shell731 (0.026712s)
9 Insertion (0.018644s) Insertion (0.077796s)

4000 8000 \
1 Bucket (0.000675s) Bucket (0.001249s)
2 Radix (0.004618s) Radix (0.009725s)
3 Quick (0.006574s) Simple Tim (0.014634s)
4 Simple Tim (0.006730s) Quick (0.016028s)
5 Merge (0.008529s) Merge (0.018039s)
6 Binary Insertion (0.016692s) Binary Insertion (0.066929s)
7 Shell1000 (0.037454s) Shell1000 (0.100196s)
8 Shell731 (0.102651s) Shell731 (0.390457s)
9 Insertion (0.311041s) Insertion (1.244236s)

16000
1 Bucket (0.002457s)
2 Radix (0.019534s)
3 Simple Tim (0.031283s)
4 Merge (0.038290s)

19

5 Quick (0.041123s)
6 Shell1000 (0.279907s)
7 Binary Insertion (0.283342s)
8 Shell731 (1.554301s)
9 Insertion (4.964963s)

5 Observations regarding rankings, patterns, performance as n
changes.

• A few things across the rankings are constant:
– Bucket and Radix hold the #1 and #2 spot consistently across all data sizes and across

both permutation styles. Very fast.
– Conversely, Shell (7-3-1) and Insertion sort occupy the bottom of the field - #8 and #9

- across all data sizes and permutation styles
– Insertion’s lack of speed is demonstrating itself dramatically as n increases.

• Other notes:
– Quicksort begins faster than Simple Tim and Mergesort at n = 1000, but by n = 16,000

both of the latter are running faster.
– Simple Tim seems to cope the best with growing datasize, even in its primitive imple-

mentation, compared to rote Quick and Mergesort.
– Similarly, as data size grows, Shellsort (1000 - 100 - 10 - 1) steals Binary Insertion’s

#6 rank. As n increases, there seems to be some risk of Binary Insertion dramatically
increasing in execution speed - sensible, as an O(n^2) algorithm.

6 True Random permutation comparison tables between algo-
rithms: Observed runtime, Empirical Big-O, Theoretical Big-O.

[8]: # Get unique 'Data Size' values
data_sizes = tr_df['Data Size'].unique()

Dictionary to store DataFrames
dfs_by_data_size = {}

Select only the required columns
columns_needed = ['Algo', 'Observed Runtime', 'Emp Big-O', 'Theoretical Big-O']

for size in data_sizes:
Filter tr_df for the current 'Data Size' and select only the required␣

↪columns
df_filtered = tr_df[tr_df['Data Size'] == size][columns_needed].copy()

Add the filtered DataFrame to the dictionary, using 'Data Size' as the key
dfs_by_data_size[size] = df_filtered

for data_sizes in dfs_by_data_size:
print(f"True Random runtimes at Data Size {data_sizes}:")

20

print(dfs_by_data_size[data_sizes])

True Random runtimes at Data Size 1000:
Algo Observed Runtime Emp Big-O Theoretical Big-O

0 Merge 0.001916 NaN n log n
5 Quick 0.001324 NaN n^2
10 Insertion 0.018981 NaN n^2
15 Shell731 0.007089 NaN n^2
20 Shell1000 0.005101 NaN n^2
25 Bucket 0.000217 NaN n
30 Radix 0.001246 NaN nd
35 Binary Insertion 0.001555 NaN n^2
40 Simple Tim 0.001462 NaN n log n
True Random runtimes at Data Size 2000:

Algo Observed Runtime Emp Big-O Theoretical Big-O
1 Merge 0.004056 1.082267 n log n
6 Quick 0.003008 1.184039 n^2
11 Insertion 0.076569 2.012195 n^2
16 Shell731 0.026349 1.894021 n^2
21 Shell1000 0.013417 1.395067 n^2
26 Bucket 0.000405 0.900418 n
31 Radix 0.002378 0.932593 nd
36 Binary Insertion 0.004537 1.545013 n^2
41 Simple Tim 0.003102 1.085790 n log n
True Random runtimes at Data Size 4000:

Algo Observed Runtime Emp Big-O Theoretical Big-O
2 Merge 0.008482 1.064340 n log n
7 Quick 0.006822 1.181388 n^2
12 Insertion 0.299134 1.965963 n^2
17 Shell731 0.100089 1.925468 n^2
22 Shell1000 0.036741 1.453388 n^2
27 Bucket 0.000733 0.855978 n
32 Radix 0.004622 0.958776 nd
37 Binary Insertion 0.016499 1.862753 n^2
42 Simple Tim 0.006723 1.115800 n log n
True Random runtimes at Data Size 8000:

Algo Observed Runtime Emp Big-O Theoretical Big-O
3 Merge 0.018181 1.099941 n log n
8 Quick 0.016247 1.251987 n^2
13 Insertion 1.224779 2.033659 n^2
18 Shell731 0.386434 1.948941 n^2
23 Shell1000 0.099846 1.442309 n^2
28 Bucket 0.001267 0.788679 n
33 Radix 0.009829 1.088580 nd
38 Binary Insertion 0.066804 2.017529 n^2
43 Simple Tim 0.016296 1.277349 n log n
True Random runtimes at Data Size 16000:

Algo Observed Runtime Emp Big-O Theoretical Big-O

21

4 Merge 0.038370 1.077586 n log n
9 Quick 0.041129 1.339942 n^2
14 Insertion 4.817695 1.975822 n^2
19 Shell731 1.547525 2.001671 n^2
24 Shell1000 0.281685 1.496302 n^2
29 Bucket 0.002480 0.969497 n
34 Radix 0.019688 1.002185 nd
39 Binary Insertion 0.284079 2.088286 n^2
44 Simple Tim 0.031620 0.956282 n log n

7 Almost-sorted permutation comparison tables between algo-
rithms: Observed runtime, Empirical Big-O, Theoretical Big-O.

[9]: # Get unique 'Data Size' values
data_sizes = as_df['Data Size'].unique()

Dictionary to store DataFrames
dfs_by_data_size = {}

Select only the required columns
columns_needed = ['Algo', 'Observed Runtime', 'Emp Big-O', 'Theoretical Big-O']

for size in data_sizes:
Filter as_df for the current 'Data Size' and select only the required␣

↪columns
df_filtered = as_df[as_df['Data Size'] == size][columns_needed].copy()

Add the filtered DataFrame to the dictionary, using 'Data Size' as the key
dfs_by_data_size[size] = df_filtered

for data_sizes in dfs_by_data_size:
print(f"Almost-sorted runtimes at Data Size {data_sizes}:")
print(dfs_by_data_size[data_sizes])

Almost-sorted runtimes at Data Size 1000:
Algo Observed Runtime Emp Big-O Theoretical Big-O

0 Merge 0.001846 NaN n log n
5 Quick 0.001256 NaN n^2
10 Insertion 0.018644 NaN n^2
15 Shell731 0.006848 NaN n^2
20 Shell1000 0.005031 NaN n^2
25 Bucket 0.000216 NaN n
30 Radix 0.001208 NaN nd
35 Binary Insertion 0.001490 NaN n^2
40 Simple Tim 0.001378 NaN n log n
Almost-sorted runtimes at Data Size 2000:

Algo Observed Runtime Emp Big-O Theoretical Big-O

22

1 Merge 0.004011 1.119827 n log n
6 Quick 0.002812 1.162428 n^2
11 Insertion 0.077796 2.061011 n^2
16 Shell731 0.026712 1.963683 n^2
21 Shell1000 0.013325 1.405248 n^2
26 Bucket 0.000389 0.850441 n
31 Radix 0.002332 0.948410 nd
36 Binary Insertion 0.004535 1.605531 n^2
41 Simple Tim 0.003078 1.159702 n log n
Almost-sorted runtimes at Data Size 4000:

Algo Observed Runtime Emp Big-O Theoretical Big-O
2 Merge 0.008529 1.088393 n log n
7 Quick 0.006574 1.225453 n^2
12 Insertion 0.311041 1.999328 n^2
17 Shell731 0.102651 1.942200 n^2
22 Shell1000 0.037454 1.490999 n^2
27 Bucket 0.000675 0.794762 n
32 Radix 0.004618 0.985718 nd
37 Binary Insertion 0.016692 1.880111 n^2
42 Simple Tim 0.006730 1.128694 n log n
Almost-sorted runtimes at Data Size 8000:

Algo Observed Runtime Emp Big-O Theoretical Big-O
3 Merge 0.018039 1.080607 n log n
8 Quick 0.016028 1.285622 n^2
13 Insertion 1.244236 2.000086 n^2
18 Shell731 0.390457 1.927417 n^2
23 Shell1000 0.100196 1.419643 n^2
28 Bucket 0.001249 0.887197 n
33 Radix 0.009725 1.074418 nd
38 Binary Insertion 0.066929 2.003471 n^2
43 Simple Tim 0.014634 1.120645 n log n
Almost-sorted runtimes at Data Size 16000:

Algo Observed Runtime Emp Big-O Theoretical Big-O
4 Merge 0.038290 1.085838 n log n
9 Quick 0.041123 1.359386 n^2
14 Insertion 4.964963 1.996523 n^2
19 Shell731 1.554301 1.993030 n^2
24 Shell1000 0.279907 1.482119 n^2
29 Bucket 0.002457 0.976495 n
34 Radix 0.019534 1.006197 nd
39 Binary Insertion 0.283342 2.081837 n^2
44 Simple Tim 0.031283 1.096119 n log n

23

8 Common Big-O Functions for Each Algorithm, Based On Ob-
served Empiricial Asymptotic Runtime Using Doubling Hy-
pothesis

Note: For these assignments, we’re using the doubling hypothesis factor guidelines provided on
Edstem and our own judgement based on the trend of observed runtime ratio as data size changes
for each algorithm.

• Merge: Ratio of approximately 1 through 1.1. Assigning O(log (n)).
• Quick: Ratio of approximately 1.15 through 1.3, growing as n increases. Assigning O(n).
• Insertion: Ratio of approximately 2. Assigning O(n log(n)).
• Shell (7-3-1): Ratio of approximately 1.95. Assigning O(n log(n)).
• Shell (1000-100-10-1): Ratio of approximately 1.58 to 1.46, decreasing. Assigning O(n).
• Bucket: Ratio of approximately 0.7 - 0.9. Assigning O(log(n)).

– Note: There was an extreme result in our initial data states that resulted in a peculiar
value for the third seed under the true random permutation case. As such, we have a
negative ratio. Given Bucket’s consistency across every other trial, we are making this
assignment by analyzing those trials primarily. We found it amusing to strike such a
strange result, and decided to keep it in instead of shuffling our seeding arrangement to
sidestep it, given the algorithm reliably sorts.

• Radix: Ratio of approximately 0.95 - 1.1. Assigning O(log (n)).
• Binary Insertion: Ratio of approximately 1.65 at n = 1000, to 2.1 as n increases. Given this

progressive delta, assigning O(n).
• Simplified Tim: Ratio of approximately 1.15 to 1.1, shrinking as n increases. Assigning

O(log(n)).

9 Noted Differences Between Observed Runtime Versus Theoret-
ical Big-O Runtime

For these comparisons, we’re using Big-O time complexity for each algorithm that considers their
worst case scenario.

• Merge: Assigned O(log(n)), worst case O(n log(n)). Based on the doubling hypothesis factor,
in practice this was faster than linearithmic.

• Quick: Assigned O(n), given its ratio grew as data size increased. Worst case O(n^2). Again,
this was much faster than its worst-case Big-O. This is also appreciably faster than its average
case Big-O, O(n log(n)).

• Insertion: Assigned O(n log(n)). Reliably right around 2, dithering as data increased. Faster
in practice than its worst-case O(n^2) with these data, but quite slow to begin with compared
to the competition.

• Shell: We see appreciable differences in the gap assignment between the two Shell schemas
provided. (7-3-1)’s ratio held near 2, and was assigned O(n log(n)), while (1000-100-10-1)
steadily decreased, and was assigned O(n). A clear case for how the Shell gap schema and
data size interact to determine sorting speed relative to Shell’s worst-case, O(n^2)

• Bucket: So fast. Assigned O(log(n)). Steadily beneath 1, suggesting that it was getting
relatively faster as the data size increased. Likely due to the fact that as n increased, the
numer of possible buckets never changed - it was always 1000. Interesting, and clearly ahead

24

of its O(n) theoretical runtime in practice.
• Radix: Ratio around 1, dithering, assigned O(log(n)). Almost as fast as bucket; begs inquiry

into what relationship between n-tuple wordsize or bucket count necessitates a switch from
one to the other. Outperformed worst-case O(nd).

• Binary Insertion: Clear improvement from Insertion, but its ratios were slightly higher than
Insertion as data size increased. This may suggest that in huge datasets, regular Insertion
catches up. Assigned O(n), performing ahead of its O(n^2) worst-case.

• Timsort: Satisfying combination that takes advantage of the strengths of Insertion and Merge.
Pulled ahead of everything non-Bucket/Radix at n = 16,000. Assigned O(log(n)), better than
its worst case of O(nlog(n)).

25

	DATA260P Project 1: Comparing Sorting Algorithms
	Experimental Time Analysis
	MergeSort Time Analysis
	QuickSort Time Analysis
	InsertionSort Time Analysis
	ShellSort Time Analysis
	BucketSort Time Analysis
	RadixSort Time Analysis
	BinaryInsertionSort Time Analysis
	Simplified Timsort Time Analysis

	Timsort Pseudocode
	Simple Timsort Time Analysis
	Comparative Time Analysis

	Ranking Table, per data size: True Random permutations
	Ranking Table, per data size: Almost-sorted permutations
	Observations regarding rankings, patterns, performance as n changes.
	True Random permutation comparison tables between algorithms: Observed runtime, Empirical Big-O, Theoretical Big-O.
	Almost-sorted permutation comparison tables between algorithms: Observed runtime, Empirical Big-O, Theoretical Big-O.
	Common Big-O Functions for Each Algorithm, Based On Observed Empiricial Asymptotic Runtime Using Doubling Hypothesis
	Noted Differences Between Observed Runtime Versus Theoretical Big-O Runtime

