Connor McManigal, mcmanige (35523952)
Shuban Ranganath, shubanr (69643212)
Peyton Politewicz, ppolitew (21907867)

Team 4 CS271P Final Report

Branch and Bound Depth First Search Overview and Data Structures:

For our first approach to the Traveling Salesman Problem(TSP), we will be constructing
a branch and bound algorithm using depth first search(BnB DFS). This algorithm is a
generalization of depth first search that expands the deepest node and uses a lower bound paired
with a heuristic function and an upper bound to prune the search space. With admissible
heuristics, branch and bound typically has linear space complexity and exponential time
complexity, which are nice properties to have in an algorithm. Some other key features are that it
is an anytime algorithm, or it can be stopped and will still return some answer, and it is complete
and optimal if run to completion with an admissible heuristic. Pruning of non-optimal branches
in the search space is done by comparing an upper bound with a lower bound that uses a heuristic
function. The upper bound imposes a depth bound and is used to indicate the current best known
solution. Prior to running the algorithm, this bound is usually set to infinity. The lower bound is
the minimum possible value that a solution to the problem can have within a specific subtree and
this is calculated by the heuristic function. Pruning is performed when the lower bound is larger
than the upper bound, and if this condition does not hold, then we keep the node and expand
further. Lastly, since we are performing depth first search, we will be using a last-in-first-out
queue or a stack for node storage and we will store nodes as objects.

Our problem instance is unique in that every node is connected to each other and for the
TSP to be completed, we must finish the tour back home, or arrive back at the starting node.
With that being said, the bidirectional exploration of the state space is a pivotal element in our
algorithmic design. The state space provides a complete graph that lacks directionality, thus this
implies that the path can be classified as bidirectional.

Our data structures for this implementation will include an adjacency matrix which serves
as our search space, a stack or an array for storing node memory, heuristic values from our
heuristic functions for each node, and each node will save the previous and successor node as a
pointer. The problem generator that we have been provided with returns a nxn matrix where n is
the number of nodes in the search space. This distance matrix represents a single instance of the
TSP or a single search space to test the algorithm against. This generator allows us to create
random instances of the TSP with varying number of nodes to visit, mean distances, and standard
deviation of distances as controlled by n, mean, and sigma. The flexibility in creating instances
allows us to generate a diverse set of TSP instances for testing and comparing algorithmic
performances with different heuristic functions. We plan to instantiate our initial node, or starting
point, by calculating the node with the lowest average distance to all other nodes. Our nodes will
be stored as objects in an array, or a stack, and this will serve as a crucial element in managing



the exploration of the search space. Each node will carry essential information about the
permutation of nodes and the set of visited nodes. In order to ensure thorough exploration, as the
algorithm continues to explore the state space, nodes are pushed onto the stack as new paths are
discovered. All together, the array provides a structured means of retrieving and manipulating
nodes in the search process, enforces modularity, and optimizes memory usage.

We will implement a simple zero heuristic to serve as our baseline, providing a reference
for comparison. Our objective is to enhance the search process and enable more effective
pruning, thereby increasing overall efficiency of our algorithm. These functions will be described
in more detail in a later section.

BnB DFS Pseudocode:

Unset

#generate a randomized state space as an n x n matrix
problemMatrix <- createState(n, mean, std_dev)

#calculate the upper bound for the problem to help with pruning during BnB. We
use greedy search.

greedy_search(init_state, problemMatrix):
cost <- NULL
current_state <- init_state
num_states <- problemMatrix.n #number of nodes in problem
not_visited <- all unique nodes from problemMatrix
not_visited.pop(init_state) #remove current state

#iterate through unique nodes and find cheapest cost from start to finish
while not_visited.not_empty():
next_node <- sort(current_state.neighbours)
if next_node in not_visited:
cost+= path_cost(current_state,next_node)
current_state <- next_node
not_visited.pop(init_state)
cost+= path_cost(current_state,init_state)
return cost

upperBound <- greedy_search()
p <- problemMatrix



BnB-DFS(p, f, upper_bound) :
var <- p.unassigned_variable()
domain <- p.sort_child_nodes(var, f)
stack .push(<var, domain>)
best_assignment <- NULL
U <- upper_bound
while not stack.isEmpty()
<var,domain> <- stack.top()
if domain.isEmpty()
p.unassignvar(var)
stack .pop()
else
value <- domain.pop()
p.assignvar(var, value)
if cost(p) >= U
continue
if p.hasFullAssignment()
U <- cost(p)
best_assignment <- p.currentAssignment()
else
var <- p.unassigned_variable()
domain <- p.sort_child_nodes(var, f)
stack.push(<var, values>)
return best_assignment

BnB DFES Heuristic Function P and Explanations:

We first begin by running a greedy search on the problem state space to find the upper
bound by which our BnB is bound. This is a cheap heuristic that tells us what the optimal
solution’s highest cost should or would be. We run the greedy search by simply finding the
lowest-cost unvisited neighbor and building a cyclical path that ends at the initial node. The
resulting cost from the greedy search() function is then used as an upper bound for the BnB-DFS
function.

BnB DFES Pseudocode Explanation:
In the BnB-DFS function, we take the bounds with the problemMatrix provided to

conduct a depth-first search into possible solution sets. We then create a stack to hold a history of
nodes considered in a solution. As the DFS search progresses if any path’s cost exceeds that of
the upper bound, the branch is pruned, and the parent nodes’ other children will be explored.
Through each iteration where the goal state is reached, the Upper bound is updated with the
lower path cost, and the search stack is reinitialized. This closely follows the logic of the BnB
DFS shown in slides and adapts the use of greedy instead of function f for heuristics.



Evaluation of Time and Space Complexity:
The time and space complexity would be a sum of the complexities for greedy search and

BnB DFS since they are not run in parallel.

The time complexity of Greedy is linear since it makes only one decision per node in the
search space. However, the space complexity would be O(1) since the neighbor of each node and
their associated cost are already given in the problem.

The time complexity of BnB DFS is exponential since we generate a graph of all possible
paths in a fully connected graph where the number of edges increases quadratically, leading to an
exponential increase in the number of possible paths in the worst case. However, the space
complexity is linear since adding each node does not mean that the resulting new paths from the
node are explored. We instead search with bounds that prune and ensure that the space occupied
by the stack scales with the paths explored, which is linear.

Time complexity = O(b"d) where b is the branching factor and d is the depth
Space complexity= O(d) where d is the depth

Stochastic Local Search Overview and Data Structures:

Additionally, we will construct a stochastic local search(SLS) to address the traveling
salesman problem. In local search optimization problems, the specific path taken to reach the
goal is irrelevant and the goal itself is the solution. A state in a local search algorithm
corresponds to a full path or solution. Typically, local search algorithms excel in handling large
scale problems and yield satisfactory solutions but not always optimal ones. This algorithm aims
to identify a complete configuration or path that satisfies certain predefined constraints while
optimizing a cost or value. One key advantage of this algorithm is that it has the potential to be
very memory efficient, as it maintains a small set of states. While traditional local search
algorithms often encounter optimization challenges in regards to local minima and maxima, our
approach of developing a SLS can strategically circumvent this issue. In the case of the TSP, we
will use SLS to effectively minimize path cost and we will leverage randomness to avoid getting
trapped in local minima. SLS algorithms determine the neighborhood of a solution by identifying
states or solutions that are adjacent to the current known solution. The neighborhood directly
influences the exploration of the state space and refers to the set of potential moves that can be
applied to the current solution in the search process. Two common procedures of implementing
SLS algorithms include greedy descent and random sampling. The greedy descent procedure is
considered efficient but incomplete. It performs well when finding local minima, but performs
poorly when exploring new paths of the search space. Greedy descent can be defined as the
movement to a neighbor with the lowest cost. On the other hand, the random sampling method is
complete but inefficient. It is well equipped for exploring new paths of the search space, but
performs poorly when looking for local minima. A random restart wrapper may be used to
improve the chances of locating an absolute minimum by reporting the best result found across



many random restarts or trials. We propose that a combination of a greedy element and random
restart will yield the most effective results. It should be noted that unlike branch and bound DFS,
the starting node for an SLS algorithm is typically a random assignment.

Similar to BnB DFS, in the TSP, each node is connected to each other and for the
problem to be solved, we must finish the tour back home. Again, the bidirectional exploration of
the state space is a pivotal element in the design of our SLS algorithm.

Our data structures and functions for the SLS algorithm include the nxn tour weight
matrix calculated by the problem generator, a list of standard deviations for each node calculated
from the matrix, a list of size n to store the current path ordering, a tour generator function that
randomly generates node orderings or paths, a tour calculator function that calculates the path
cost from the current path and weight matrix, and a hill descent function. The tour weight matrix
represents a single instance of the TSP or a single search space to test the algorithm against. The
tour calculator will utilize the weight matrix and the respective arcs of the current path. Given a
tour ordering and its associated arcs, the tour calculator will be instantiated as an nxn matrix that
assigns 1’s to the arcs corresponding to that specific path(i.e. arc 1—4 will assign 1 to [1,4]) and
0’s to the arcs not involved in the current path. This matrix will be multiplied by the original tour
weight matrix and will be summed to find the total path cost. The current path, as determined by
the tour generator function, list of standard deviations, and nodes with the highest cost will be
used by the hill descent function to swap the node with the highest cost with the node containing
the lowest standard deviation. The list of the final path ordering will be determined by the hill
descent function which swaps nodes based on the results of the path cost.

SLS Pseudocode:

Unset

#generate a randomized state space as an n x n matrix
problemMatrix <- createState(n, mean, std_dev)

#store all nodes in a list for manipulation
nodelList <- createlList(loop n)

#calculate standard deviation of every node's set of path weights; store in
list where individual node n's standard deviation is in cell n-1.

list deviations <- calculateStdDev(nodelList)

#initialize to a random starting state
bestTour <- currentTour <- shuffle(nodelList)

#calculate path cost by generating nxn matrix of coordinates



pathMatrix <- coordMatrix(currentTour)
bestCost <- pathMatrix * problemMatrix

#local search
loop do
if (iterations >= 4) then return bestFound
else
#swap order of lowest std. dev. node and node with highest
preceding value
currentTour <- swap(currentTour)
pathMatrix <- coordMatrix(currentTour)
if pathMatrix * problemMatrix >= bestCost
restart
++iterations
else
bestCost <- pathMatrix * problemMatrix
bestTour <- currentTour

SLS Pseudocode Explanation:

Our SLS approach is a modified version of the hill climbing algorithm. The complexity
of calculating the neighborhood around a given tour solution seemed daunting given a scaling,
fully connected node network. That is - ensuring we had identified and calculated every adjacent
solution to a given tour seemed computationally intensive and difficult to ensure. As a result, we
propose a potentially effective, lightweight solution that uses some preemptive analysis to
identify nodes most- and least-likely to impact the path cost of a tour if their ordering is changed.

Our pseudocode walks through the process as follows:
(A) We accept the n x n problem matrix from the generator.
(B) We create a list of n nodes to manipulate for path creation.
(C) We calculate the standard deviation of every node’s path and store it in a list that
mirrors B.

e (D) The list from B is shuffled to create a starting point and this is set as the best known
tour.

e (E) The tour path from D is utilized to create a second matrix that is then for
multiplication and calculation of path cost.

e (F) The node with the minimum value from C and the node with the longest preceding
path weight from E are swapped in the tour ordering. If there is an improvement, repeat.
If not, add the path to a record, then restart with a new randomly generated tour. Repeat
until four iterations have completed.



SLS Objective Function Details:
The objective of the SLS function is hill descent. The peculiarity we’re aiming to exploit

can be exemplified by the following example:

Imagine some hypothetical tour with five nodes, completely connected. One node, Q, has
path weights of [11, 13, 14, 9] to the other nodes. Allow another node, R, to have path weights of
[8, 11, 19, 22]. Even in its worst case, Q can only increase the cost of a tour by 5. On the other
hand, R can potentially switch from 22 to 11; an 11-point cost savings.

Our thinking is that in many tours, there will be at least one node with relatively low
standard deviation across its path weights such as Q above. We propose using this node to
aggressively cycle through its partner spaces, treating it as a ‘free space’ to see if we discover
substantial reductions in total path cost by exchanging this relatively stable node with the highest
cost node of a tour.

After four iterative resets and attempts to find local minima, we disengage the algorithm.
This is a greedy approach - it doesn’t try to do anything beyond making an improvement on its
immediate next move.

Evaluation of Time and Space Complexity:

Relatively lightweight for required space, seemingly - two matrices that scale with n, two
lists that scale with n. Both linear. Only a few previous states are saved in memory.
Time is also gated solely by n.

Results and Conclusions:

To assess the performance of our Branch and Bound Depth-First Search and Stochastic
Local Search algorithms, we used the following framework. For each algorithm, we tested four
different cases: small search space with low standard deviation, small search space with high
standard deviation, large search space with low standard deviation, and large search space with
high standard deviation. Testing our algorithms on our laptops proved to be difficult, perhaps due
to limited processing power, thus we experienced issues in regard to running TSP instances with
very large search spaces. Therefore, we defined the small search space as 10 nodes and large
search space as 50 nodes. We held the mean distance of nodes as a constant of 20 across all tests.
Next, we defined low standard deviation as being approximately 25%(i.e. 5) of the mean and
high standard deviation being 100%(i.e. 20) of the mean. We thought that this would serve as an
adequate and thorough approach to testing the strengths and weaknesses of each algorithm.

Branch and Bound DFS:

Through our experimentation we see that branch and bound uses almost half the memory
of SLS to operate on smaller TSP instances given its relatively lightweight heuristic and storage
usage. As we mentioned earlier, space complexity scales linearly with the depth of the recursion
stack or O(d), which aligns with our results when comparing BnB and SLS. We also notice that



BnB does return the most optimal path, making it the more efficient algorithm when paired with
the greedy heuristic. The tour cost is approximately 3 units smaller than the SLS algorithm in
small search space with low standard deviation and approximately 8 units shorter than SLS in the
small search space with high standard deviation. Also, we should note that the BnB algorithm
performs worse with a path weight of 158 compared to SLS’s path weight of 150 on the same
graph with a small search space and low variance, but provides a smaller path weight of 91
compared to SLS’s path weight of 96 when the search space is small and standard deviation is
high. This could possibly suggest that branch and bound is better in regards to path weights for
high standard deviation instances compared to low standard deviation search spaces.

We can also see that the BnB struggles in terms of runtime when run on low deviation
graphs where it takes 212x more times to return a path. However, in the small search space with
high standard deviation, the runtime is about half a second longer than its counterpart SLS
algorithm. At its worst, time complexity for a branch and bound algorithm is exponential in
terms of the depth measured as O(b”d). This may suggest that runtime for branch and bound is
sensitive to problem characteristics such as standard deviation. In other words, BnB may struggle
to efficiently prune unpromising branches in a search space where standard deviation is low.
Additionally, our branch and bound algorithm outputs surprisingly different results in regard to
the number of branches pruned. In the low deviation search space, a total of 1.7 million branches
were pruned while in the high deviation space only 63,000 branches were pruned. Perhaps the
BnB algorithm had a more difficult time pruning in the low standard deviation than the high
standard deviation search space. This result further supports our claim that standard deviation is
a significant factor in determining the algorithms runtime and pruning abilities. Despite the fact
that our BnB algorithm has a longer runtime, in small search spaces, it consistently provided a
more optimal path with a lower tour cost.

In terms of larger graphs, with what we have defined as a large search space(i.e. 50+
nodes), we see the BnB algorithm times out while keeping low memory usage. Due to the
timeouts, however, we cannot make any solid conclusions about BnBs performance on large
search spaces. We believe that if we had stronger computing abilities(more than the power of a
standard laptop), that the branch and bound algorithm would be able to run thoroughly. This
caused us to raise questions about branch and bounds possibilities for exponential time
complexity. We believe that these timeouts could have been caused by the depth of the search
space and the resulting large branching factor. If this was the case, the algorithm would explore
an exponentially increasing number of nodes as the search space expanded.

All together, we witnessed that our branch and bound algorithm demonstrated its
capability to deliver optimal solutions in scenarios characterized by a small search space.
However, this precision in solution quality came at the expense of runtime, with BnB exhibiting
longer execution times in comparison to SLS. Notably, the peak memory usage of BnB was
about half of SLS and this observation underscores the inherent tradeoff between time and space
efficiency in algorithmic performance.



Stochastic Local Search:

SLS has some of the lowest runtime when running in small search spaces regardless of
deviation, showing that deviation of a set has relatively little effect on its ability to find close to
optimal solutions. But, some of the downsides of this algorithm include not being able to detect
when no solution exists. While its memory usage compared to BnBs ~8500B at its peak is
relatively high, it remains consistent. Unlike BnB, we see SLS algorithms perform slightly better
with low standard deviation sets. SLS’s algorithm makes it a memory burden on smaller datasets
but its efficiency of memory usage is shown on much larger datasets where it also provides a
significant speedup

While using SLS on larger search spaces, we notice a linear scaling of time and memory.
With a 5 fold increase in dataset size we notice a ~30% increase in peak memory usage and a
10x increase in time in both the low and high standard deviation datasets. This also shows that
variance and standard deviation have a slight effect on SLS regardless of search space size. The
nature of SLS also means that it can return an optimal path whenever one is available at a much
quicker rate than BnB on similar search spaces. Our heuristic for BnB uses a similar greedy
strategy to help prune branches but SLS’s ability to optimize greedy to return the optimal path
makes it the algorithm of choice for large datasets with indeterminate variances. While we do see
a lot more iteration on SLS based on the variance of the path weights such an increase does not
reflect on the memory usage and instead increases the runtime by a large amount as noticed by
the 0.05 to 0.9 on smaller search spaces and ~0.4 seconds for both large search spaces.

We also observed that high standard deviations lead to more iterations on smaller search
spaces, but inversely larger search spaces have a decrease in iterations with a rise in deviation.
We believe that higher deviations provide a greater ability to explore better paths at the start of
the process which is very helpful for finding better paths earlier whereas smaller search spaces
pay the price for this early optimization but do not run long enough to reap the benefits.

Conclusion and Proposed Improvements:

Through this project, we observed a variety of differences between the performances of
these two algorithms and witnessed the time and space complexity tradeoff. In small search
spaces, BnB provided a more efficient and optimal solution with less memory usage, but at the
cost of longer run times. On the other hand, SLS provided a near optimal solution with faster
runtime, but with almost double the memory consumption. In larger search spaces, BnB failed to
run to completion and timed out, presumably due to a large branching factor and depth of the
TSP instance. But, in the larger search space, SLS succeeded in providing a fast solution at the
cost of large memory consumption.

In regard to improving the branch and bound algorithm, a variety of strategies could be
explored and implemented. Some possible improvements could include attempting new heuristic
functions or bounding strategies to enhance the effectiveness of pruning, or implementing an
early stopping criteria to halt the algorithm when a satisfactory solution is found.



To improve our SLS algorithm, we could increase the number of allowed iterations, thus
permitting additional randomness which could lead toward a more optimal solution.

Overall, this project could further be enhanced by a few considerations including, using a
more efficient programming language that can release unnecessary memory and utilizing more
powerful hardware or cloud computing resources that would provide more computational power.

We are also limited by the tools available when measuring memory usage and runtime
where each run is highly variable and dependent on the OS and runtime environment of the PC.
With a more accurate way to measure memory usage and the ability to ensure no other processes
infringe on the runtime, we can draw more solid conclusions about the actual resource utilization
of each algorithm.

Appendix:

Small Search Space and Low Standard Deviation(10 nodes, 20 mean, 5 standard deviation):

BnB ng Mem Used: 8575 SLS Max Mem Used: 13951
BnB Time: 20.013447999954224 seconds SLS Time: 0.09074902534484863 seconds
BnB Optimal Path: [4, 1, 9, 7, 3, 6, 2, 8, @, 5, 4] |sLS oOptimal Path: [0, 5, 2, 8, 6, 3, 7, 9, 1, 4, @]

BnB Optimal Weight: 158.88649999999998 SLS Optimal Weight: 150.70870000000002

BnB Total Tour Cost: 156.9205 SLS Total Tour Cost: 159.5355
BnB Number of Pruned Branches: 1714959 SLS Number of Iterations: 10

Small Search Space and High Standard Deviation(10 nodes, 20 mean, 20 standard deviation):

BnB Max Mem Used: 8575 SLS Max Mem Used: 13807

BnB Time: 0.58681321144104 seconds SLS Time: 0.0898439884185791 seconds

BnB Optlmal Path: [2| 6, 3, 5,0, 8,7,1,9, 4, 21QsLs Optlmal Path: [0, 5 9, 4,8,7,1, 3, 6, 2, 0]
BnB Optimal Weight: 91.5056 SLS Optimal Weight: 96.51689999999999

BnB Total Tour Cost: 99.89519999999999 SLS Total Tour Cost: 107.80910000000002

BnB Number of Pruned Branches: 63659 SLS Number of Iterations: 8

Large Search Space and Low Standard Deviation(50 nodes, 20 mean, 5 standard deviation):

SLS Max Mem Used: 41223

SLS Time: 0.43256425857543945 seconds

SLS Optimal Path: [e, 13, 25, 22, 19, 16, 32, 10, 2, 36, 44, 48, 1, 43, 46, 41, 23, 3, 11, 17, 18, 35, 21, 29, 24, 38, 47, 15, 20, 40, 49, 12, 4, 8, 33, 37, 42, 27, 14,
39, 34, 28, 5, 30, 26, 7, 45, 9, 31, 6, 0]

SLS Optimal Weight: 844.796

SLS Total Tour Cost: 871.0980000000002

SLS Number of Iterations: 5

Large Search Space and High Standard Deviation(50 nodes, 20 mean, 20 standard deviation):

SLS Max Mem Used: 45546

SLS Time: 0.42952823638916016 seconds

SLS Optimal Path: [e, 29, 34, 11, 7, 49, 9, 35, 28, 17, 48, 44, 39, 38, 47, 13, 22, 40, 23, 19, 42, 41, 45, 4, 31, 18, 36, 37, 46, 14, 20, 1, 21, 12, 8, 2, 16, 25, 6, 5
, 24, 33, 15, 3, 27, 43, 30, 26, 10, 32, 0]

SLS Optimal Weight: 821.2267999999998
SLS Total Tour Cost: 905.8196999999998
SLS Number of Iterations: 14

SLS Results, sorted by alphanumeric descending source file name:

21907867,69643212,35523952

SLS
0.08414196968078610 , 18563.512135964320
0.08014583587646480 , 19710.336621954220




0.08751797676086430 9200.633752584830
0.08542227745056150 9726.416466026460
0.08783912658691410 9085.018153691450
0.08160519599914550 9729.634825156100
0.08444333076477050 9034.463572204750
0.08210611343383790 9773.828023719670
0.08383607864379880 9089.133158716220
0.08564519882202150 9742.272287514330
3.5617241859436000 97352.46545254830
3.629826068878170 99170.54523689780

3.7466979026794400

97907.73296058760

3.5453109741210900

99285.11356032990

3.635708808898930

97223.74764672770

3.560626983642580

99429.37841522060

3.597975730896000

97424.86845237990

3.6240270137786900

99338.72983750120

3.6429638862609900

97273.34809321640

3.5258262157440200

99372.67630961470

0.22033381462097200 18728.2643937522
0.21325063705444300 19666.777426170000
0.23176193237304700 18690.99618645620
0.21109986305236800 19637.451455396500
0.22684216499328600 18902.135430571200
0.21100401878356900 19750.452992952200
0.21971702575683600 18618.11439842310
0.21021795272827100 19644.109927463600
0.2238929271698000 18917.818186703900
0.20788979530334500 19698.018777575100
0.015893936157226600 2049.1616014632600
0.015804290771484400 2327.437510979620
0.015970945358276400 2040.6292636335900
0.016060829162597700 2330.644650790500
0.01624917984008790 1843.2523499322600
0.015357017517089800 2316.7256619833300
0.015662193298339800 1840.0825654887000
0.01429605484008790 2424.8458511690000

0.015949010848999000

2027.5259292449000




0.015969038009643600

2334.762450419390

0.4375269412994390 28331.040298032100
0.4155881404876710 29684.19491463280
0.4288458824157720 28219.657380546300
0.418651819229126 29540.32008341940
0.4295330047607420 27722.147535673100
0.4201829433441160 29505.213441217600
0.4327239990234380 28410.131927475400
0.4193267822265630 29552.465174220700
0.4307117462158200 28322.909796437700
0.42989015579223600 29585.842373484900
0.7125427722930910 38386.57881267190
0.7198500633239750 39644.02318104120
0.7216567993164060 38507.253590806700
0.7131509780883790 39373.35219172100
0.7238621711730960 38248.85692522400
0.721153974533081 39562.38272590830
0.726423978805542 37961.67811179310
0.7154660224914550 39603.15766360600
0.7396080493927000 37703.63534952840
0.6983461380004880 39599.99964566930
0.034842729568481400 4382.554900323600
0.03582191467285160 4820.799149441480
0.03620409965515140 4703.885559102450
0.03583979606628420 4701.175444990660
0.03512907028198240 4164.802531773960
0.03174710273742680 4828.7229684416900
0.037011146545410200 4167.150262977490
0.0342707633972168 4735.855145132810
0.03578996658325200 4273.836716989710
0.03507494926452640 4788.2583983448900

1.4724440574646000

58096.564895535200

1.4480857849121100

59561.016319949600

1.4837219715118400

57582.80095699660

1.4395570755004900

59500.748454463400

1.469905138015750

57976.920139436200

1.4491171836853000

59415.2425226822




1.4592907428741500

57922.954799206100

1.445741891860960

59410.06831424010

1.5125329494476300

57388.723296690200

1.4533400535583500

59517.78952304760

0.058302879333496100 6938.7366733731500
0.05797410011291500 7261.040656115950
0.0587921142578125 6792.611370369090
0.05733299255371090 7243.928218128630
0.05996417999267580 6714.960450436990
0.05577802658081060 7232.41220106855
0.05638599395751950 6865.144008231730
0.05791902542114260 7312.507295444600
0.058811187744140600 6787.742178924770
0.056034088134765600 7303.458431834000
2.467423915863040 77817.48926709360
2.4159719944000200 79469.37807781690
2.3981189727783200 77423.70414635690
2.431649923324590 79388.94835423800
2.449090003967290 77136.48764776190
2.3998682498931900 79445.08445733700
2.456801176071170 76426.0568298334
2.4026589393615700 79395.3386337784
2.4174787998199500 77719.36351135130

2.419355869293210

79376.43929931800




