
final_report

May 29, 2024

1 Effect of NBA Injuries on Team Performance
Video: https://youtu.be/ZNLW5JyyGuA

##Permissions

Place an X in the appropriate bracket below to specify if you would like your group’s project to be
made available to the public. (Note that student names will be included (but PIDs will be scraped
from any groups who include their PIDs).

• [X] YES - make available
□ NO - keep private

##Overview

• Before conducting data analysis, we expect that there exists a negative correlation between
the number of injured players on an NBA team and the team’s performance.

• After doing the data analysis, we found out that based on the datasets of NBA teams per-
formances and injuries from 2010-2015, the winning percentage decreases as total number
of injuries (Relinquished) increases and also increases as the number of previously injured
players coming back (Acquired) increases when we predict the winning percentage.

• The linear regression model we generated from the datasets provide enough evidence to sup-
port our expectation that there is a negative relationship between injuries and winning per-
centage and vice versa. However, due to lack of data points, our model is not the best at
predicting future winning percentages given the number of injuries on a team.

1.1 Names
• Connor McManigal
• Ryan Swartz
• Matthew Cohen
• Xuwen Yan(Ella)
• Egor Pustovalov

1.2 Research Question
Is there an association between an NBA team’s number and type of injuries to their record from the
2010 season through the 2015 season? Also, can we accurately predict a team’s change in record
based on injuries that occur in future seasons?

1

1.3 Background and Prior Work
The NBA is revered as the best basketball league in the world due to its highly competitive and
captivating environment, features of the best professional athletes, and the ability for players to
sign contracts, thus generating millions of dollars in revenue. Athletes in the NBA are considered
some of the best competitors due to their agility, endurance, speed, size, skills, and talent. In the
NBA, a single game consists of four twelve-minute quarters and the game clock is intermittently
stopped for timeouts, fouls, quarter breaks, and a halftime. This makes it difficult to judge the
exact duration that athletes are on the court, but it is estimated that the average NBA game lasts
around two and a half hours and some games can last around three hours.(1) This means that these
highly skilled players are on the court competing for a considerably long duration, sometimes with
little rest at all. Due to these competitive conditions, it is common for NBA players to get injured,
and consequently, have to sit on the bench until they recover. Additionally, a typical NBA season
for a team includes eighty-two regular season games with the possibility of additional games if their
team advances to the playoffs. Overall, this combined with the physicality of every minute of each
game creates an environment with a high rate of injury.

Statistics have been taken on the distribution of injury types across the NBA and show that 57.8%
of injuries involve the lower extremities, 19.3% for the upper extremities, 10% for the torso, and
1.8% are related to cervical trauma.(2) Some of the typical lower extremity injuries include the
ankles, knees, foot fractures, and muscle tears. Some other common injuries are sprained fingers,
concussions, broken noses, facial injuries, and sometimes even leg open fractures.(3) Among other
findings, players who weigh more, are taller, and are between the ages of 26 and 34 are considered
the most likely to become injured. Interestingly, a study was administered on NBA games from
1988 to 2005 and showed that there were upwards of 12,500 injuries that took place and around
6,200 of them were related to athletes’ ankles. All together, these statistics are concerning, but the
NBA released information last year that stated that the injury rates of players was down about six
percent.(4)

We want to analyze the impact of how the number of injured players on a team affects the overall
team’s efficiency and performance.

1. Lw. “NBA Game Length: How Long Is an NBA
Game in Minutes?” MARCA, Marca, 10 Mar. 2022,
https://www.marca.com/en/basketball/nba/2022/03/10/622a267de2704ef25e8b4585.html.�

2. aes5559, and aes5559. “SIOWFA15: Science in Our World: Certainty and
Controversy.” SiOWfa15 Science in Our World Certainty and Controversy, 11
Dec. 2015, https://sites.psu.edu/siowfa15/2015/12/11/whos-most-likely-to-get-injured-in-
the-nba-and-how/.�

3. Thompson, Darrelle. “What Are the Most Common Injuries in the NBA?” Sportscast-
ing, 13 Sept. 2019, https://www.sportscasting.com/what-are-the-most-common-injuries-in-
the-nba/.�

4. Tim Reynolds | The Associated Press. “NBA Says Injury Rate down Slightly from Normal.”
NBA.com, NBA.com, 15 Apr. 2021, https://www.nba.com/news/nba-says-injury-rate-down-
slightly-from-normal.�

2

1.4 Hypothesis
Alternative Hypothesis: We propose that there is an association between the number of injured
players on a team and their winning record (winning percentage) through the 2010-2015 seasons.
Due to the NBA’s highly competitive environment, we predict that there will be a negative rela-
tionship between a teams number of injured players and their winning percentage. In other words,
the more injured players there are on a team, the lower the team’s winning percentage will be. Our
reasoning is that the teams with more injured players will consequently have more players sitting
out and possess less depth in their rosters, thus limiting the team’s performance. Also, we believe
that we will be able to effectively predict a teams record in the 2016-17 season based on the number
of injuries. Additionally, we propose that lower extremity injuries will have a more negative impact
on the teams’ winning record. This is because the lower extremities of players serves a crucial role
in their performance and allow them to get up and down the court.

Null Hypothesis: NBA player injuries and injury types will have no effect on a team’s record as
a result of random chance. The test significance is 5%.

1.5 Setup

[]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import datetime

import patsy
import statsmodels.api as sm
import scipy.stats as stats
from scipy.stats import ttest_ind, chisquare, normaltest
from scipy.stats import ks_2samp
from scipy.stats import pearsonr

import patsy
import statsmodels.api as sm
import statsmodels.formula.api as smf

from sklearn.metrics import accuracy_score
from sklearn.linear_model import LinearRegression
from sklearn import metrics
from sklearn.model_selection import train_test_split

from IPython.display import display_html

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19:
FutureWarning: pandas.util.testing is deprecated. Use the functions in the
public API at pandas.testing instead.

import pandas.util.testing as tm

3

[]: #deal with excel datasets
import pip
pip.main(["install", "openpyxl"])

WARNING: pip is being invoked by an old script wrapper. This will fail in a
future version of pip.
Please see https://github.com/pypa/pip/issues/5599 for advice on fixing the
underlying issue.
To avoid this problem you can invoke Python with '-m pip' instead of running pip
directly.

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-
wheels/public/simple/
Requirement already satisfied: openpyxl in /usr/local/lib/python3.7/dist-
packages (3.0.10)
Requirement already satisfied: et-xmlfile in /usr/local/lib/python3.7/dist-
packages (from openpyxl) (1.1.0)

[]: 0

1.6 Data Cleaning
The following section presents information on the data cleaning steps for the two datasets used in
this report.

1.7 First Dataset - Injury Stats
1.7.1 Link to Dataset: https://www.kaggle.com/datasets/ghopkins/nba-injuries-

2010-2018

1.7.2 No. Observations: 17,408

This dataset describes the occurrence, injury type, player team, and time of injury for NBA players
in the 2010 - 2020 years.

The information present here will be combined with the Historical NBA Performance dataset to
match players with their teams for a given year. This will allow us to show how the number of
injuries across different players for the same team impacts the team’s historical performance. The
data starts as two different types. A relinquished injury has a date, name, and notes about the
injury that occured. An acquired injury has a date, name, and notes about the return of the injured
player. At the end, we will have counts of the number of acquired/relinquished injuries and counts
of injuries that had certain body counts in the ‘Notes’ column for each season of each team.

[]: #first dataset - Injury stats
injury = pd.read_csv('injuries_2010-2020.csv')
injury

[]: Date Team Acquired Relinquished \
0 2010-10-03 Bulls NaN Carlos Boozer
1 2010-10-06 Pistons NaN Jonas Jerebko

4

2 2010-10-06 Pistons NaN Terrico White
3 2010-10-08 Blazers NaN Jeff Ayres
4 2010-10-08 Nets NaN Troy Murphy
… … … … …
27100 2020-09-30 Lakers Dion Waiters NaN
27101 2020-10-02 Heat NaN Bam Adebayo
27102 2020-10-02 Heat NaN Goran Dragic
27103 2020-10-02 Heat Chris Silva NaN
27104 2020-10-06 Heat Bam Adebayo NaN

Notes
0 fractured bone in right pinky finger (out inde…
1 torn right Achilles tendon (out indefinitely)
2 broken fifth metatarsal in right foot (out ind…
3 torn ACL in right knee (out indefinitely)
4 strained lower back (out indefinitely)
… …
27100 activated from IL
27101 strained neck (DTD)
27102 placed on IL with torn plantar fascia in left …
27103 activated from IL
27104 returned to lineup

[27105 rows x 5 columns]

The NBA season roughly goes from October until June. So we are interpreting the column ‘Season’
as the year the season started, i.e. any injury happening in the 2015-2016 season will be read as
the Season: 2015.

[]: injury_original = injury.assign(
Season = injury.get('Date').apply(lambda s: int(s.split('-')[0])- np.

↪where(int(s.split('-')[1]) < 9, 1, 0)))
#2015-16 season ended June 19, 2016
#index 15819 -> end of 2015 season
injury = injury_original[injury_original['Season']<2017]

grouped_by_team_year is a data frame that has the counts of Acquired and Relinquished from
the injury dataset. Relinquished means that a player was injured and placed on the Injury List
(IL) and not playing anymore. Acquired means they were taken off the IL and are playing again.
Since each entry in injury corresponds to a relinquishment or acquisition to the IL, we can count
how many players were put on the IL (Relinquished) and taken off the IL (Acquired).

[]: grouped_by_team_year = injury.groupby(['Season','Team']).count().
↪drop(columns=['Date', 'Notes'])

grouped_by_team_year

[]: Acquired Relinquished
Season Team

5

2010 76ers 26 33
Blazers 10 48
Bobcats 52 97
Bucks 25 98
Bulls 17 33

… … …
2016 Suns 37 58

Thunder 23 36
Timberwolves 18 31
Warriors 66 88
Wizards 43 50

[211 rows x 2 columns]

Here, we are taking all entries in the injury dataset that are an acquisition from the IR, meaning
they are returning to play.

[]: acquired_injury = injury.dropna(subset=['Acquired'])
acquired_injury

[]: Date Team Acquired Relinquished \
53 2010-10-27 Heat Jerry Stackhouse NaN
81 2010-10-27 Rockets Jermaine Taylor NaN
101 2010-10-29 Cavaliers Samardo Samuels NaN
103 2010-10-29 Celtics Luke Harangody NaN
105 2010-10-29 Grizzlies Marc Gasol NaN
… … … … …
18934 2017-05-19 Celtics Jordan Mickey NaN
18937 2017-05-20 Warriors Andre Iguodala NaN
18939 2017-05-21 Celtics James Young NaN
18942 2017-05-22 Spurs Kawhi Leonard NaN
18947 2017-06-01 Warriors Zaza Pachulia NaN

Notes Season
53 activated from IL 2010
81 activated from IL 2010
101 activated from IL 2010
103 activated from IL 2010
105 activated from IL 2010
… … …
18934 activated from IL 2016
18937 activated from IL 2016
18939 activated from IL 2016
18942 activated from IL 2016
18947 activated from IL 2016

[6074 rows x 6 columns]

6

[]: acquired_injury.groupby(['Season','Team']).count().
↪drop(columns=['Date','Notes','Relinquished'])

[]: Acquired
Season Team
2010 76ers 26

Blazers 10
Bobcats 52
Bucks 25
Bulls 17

… …
2016 Suns 37

Thunder 23
Timberwolves 18
Warriors 66
Wizards 43

[210 rows x 1 columns]

Similarly: Here we are taking all entries in the injury dataset that are a relinquishment from the
IR, meaning they are now injured and not playing.

[]: relinquished_injury = injury.dropna(subset=['Relinquished'])
relinquished_injury

[]: Date Team Acquired Relinquished \
0 2010-10-03 Bulls NaN Carlos Boozer
1 2010-10-06 Pistons NaN Jonas Jerebko
2 2010-10-06 Pistons NaN Terrico White
3 2010-10-08 Blazers NaN Jeff Ayres
4 2010-10-08 Nets NaN Troy Murphy
… … … … …
18950 2017-07-25 Suns NaN Brandon Knight
18951 2017-07-30 Clippers NaN Danilo Gallinari
18952 2017-08-08 Grizzlies NaN Ben McLemore
18953 2017-08-10 Thunder NaN Patrick Patterson
18954 2017-08-28 Pelicans NaN Solomon Hill

Notes Season
0 fractured bone in right pinky finger (out inde… 2010
1 torn right Achilles tendon (out indefinitely) 2010
2 broken fifth metatarsal in right foot (out ind… 2010
3 torn ACL in right knee (out indefinitely) 2010
4 strained lower back (out indefinitely) 2010
… … …
18950 torn ACL in left knee (out for season) 2016
18951 fractured bone in right hand (out indefinitely) 2016
18952 surgery on right foot to repair fracture (out … 2016

7

18953 arthroscopic surgery on his left knee (out ind… 2016
18954 surgery to repair torn left hamstring (out ind… 2016

[12881 rows x 6 columns]

[]: relinquished_injury.groupby(['Season','Team']).count().
↪drop(columns=['Date','Notes','Acquired'])

[]: Relinquished
Season Team
2010 76ers 33

Blazers 48
Bobcats 97
Bucks 98
Bulls 33

… …
2016 Suns 58

Thunder 36
Timberwolves 31
Warriors 88
Wizards 50

[211 rows x 1 columns]

We also want to observe the type of injury and see if certain injuries hurt a team’s record more
than others. So we are looking through each entry ‘Notes’ and counting for each season and team
how many knee, ankle, foot, hand, finger, and back injuries there were.

[]: knee = injury[injury['Notes'].str.contains("knee")]\
.groupby(['Season','Team']).count().

↪drop(columns=['Date','Notes', 'Acquired'])
knee = knee.rename(columns={"Relinquished": "Knee injuries"})
ankle = injury[injury['Notes'].str.contains("ankle")]\

.groupby(['Season','Team']).count().
↪drop(columns=['Date','Notes', 'Acquired'])

ankle = ankle.rename(columns={"Relinquished": "Ankle injuries"})
foot = injury[injury['Notes'].str.contains("foot")]\

.groupby(['Season','Team']).count().
↪drop(columns=['Date','Notes', 'Acquired'])

foot = foot.rename(columns={"Relinquished": "Foot injuries"})
hand = injury[injury['Notes'].str.contains("hand")]\

.groupby(['Season','Team']).count().
↪drop(columns=['Date','Notes', 'Acquired'])

hand = hand.rename(columns={"Relinquished": "Hand injuries"})
finger = injury[injury['Notes'].str.contains("finger")]\

.groupby(['Season','Team']).count().
↪drop(columns=['Date','Notes', 'Acquired'])

8

finger = finger.rename(columns={"Relinquished": "Finger injuries"})
back = injury[injury['Notes'].str.contains("back")]\

.groupby(['Season','Team']).count().
↪drop(columns=['Date','Notes', 'Acquired'])

back = back.rename(columns={"Relinquished": "Back injuries"})

knee_styler = knee.head().style.set_table_attributes("style='display:inline'").
↪set_caption('injuries related to knee')

ankle_styler = ankle.head().style.set_table_attributes("style='display:
↪inline'").set_caption('injuries related to ankle')

foot_styler = foot.head().style.set_table_attributes("style='display:inline'").
↪set_caption('injuries related to foot')

finger_styler = finger.head().style.set_table_attributes("style='display:
↪inline'").set_caption('injuries related to finger')

back_styler = back.head().style.set_table_attributes("style='display:inline'").
↪set_caption('injuries related to back')

hand_styler = hand.head().style.set_table_attributes("style='display:inline'").
↪set_caption('injuries related to hand')

display_html(knee_styler._repr_html_()+\
ankle_styler._repr_html_()+\
foot_styler._repr_html_()+\
finger_styler._repr_html_()+\
back_styler._repr_html_()+\
hand_styler._repr_html_(), raw=True)

1.8 Second Dataset - Historical NBA Performance
1.8.1 Link to Dataset: https://data.world/gmoney/nba-team-records-by-year

1.8.2 No. Observations: 208

This dataset describes the number of wins, number of losses, and winning percentage of an NBA
team in a given year.

The information present here will be combined with the injury dataset to match players with their
teams present in this dataset for a given year. This will allow us to show how the number of
injuries across different players for the same team impacts the team’s historical performance. The
data starts with a year, team name, record, and winning percentage. We will be creating the
‘Season’ variable again and adding a ‘Win’ and ‘Loss’ column based on the record.

[]: #second dataset - Team Performance
performance = pd.read_excel('Historical_NBA_Performance.xlsx')
performance

[]: Year Team Record Winning Percentage Unnamed: 4 Unnamed: 5 \
0 2016-17 Celtics 25-15 0.625 NaN NaN
1 2015-16 Celtics 48-34 0.585 NaN NaN

9

2 2014-15 Celtics 40-42 0.488 NaN NaN
3 2013-14 Celtics 25-57 0.305 NaN NaN
4 2012-13 Celtics 41-40 0.506 NaN NaN
… … … … … … …
1412 1965-66 Bullets 38-42 0.475 NaN NaN
1413 1964-65 Bullets 37-43 0.463 NaN NaN
1414 1963-64 Bullets 31-49 0.388 NaN NaN
1415 1962-63 Zephyrs 25-55 0.313 NaN NaN
1416 1961-62 Packers 18-62 0.225 NaN NaN

Unnamed: 6 Unnamed: 7 Unnamed: 8 Unnamed: 9
0 NaN NaN NaN NaT
1 NaN NaN NaN NaT
2 NaN NaN NaN NaT
3 NaN NaN NaN NaT
4 NaN NaN NaN NaT
… … … … …
1412 NaN NaN NaN NaT
1413 NaN NaN NaN NaT
1414 NaN NaN NaN NaT
1415 NaN NaN NaN NaT
1416 NaN NaN NaN NaT

[1417 rows x 10 columns]

Let performance_clean be the clean dataset with the columns we want.

[]: performance_clean = performance[['Year', 'Team', 'Record', 'Winning␣
↪Percentage']]

[]: performance_clean.get('Team').unique()

[]: array(['Celtics', 'Hawks', 'Blackhawks', 'Nets', 'Hornets', 'Bobcats',
'Bulls', 'Cavaliers', 'Mavericks', 'Nuggets', 'Pistons',
'Warriors', 'Rockets', 'Pacers', 'Clippers', 'Braves', 'Lakers',
'Grizzlies', 'Heat', 'Bucks', 'Timberwolves', 'Pelicans', 'Knicks',
'Thunder', 'Supersonics', 'Magic', '76ers', 'Nationals', 'Suns',
'Trail Blazers', 'Kings', 'Royals', 'Spurs', 'Raptors', 'Jazz',
'Wizards', 'Bullets', 'Zephyrs', 'Packers'], dtype=object)

[]: performance_clean.head()

[]: Year Team Record Winning Percentage
0 2016-17 Celtics 25-15 0.625
1 2015-16 Celtics 48-34 0.585
2 2014-15 Celtics 40-42 0.488
3 2013-14 Celtics 25-57 0.305
4 2012-13 Celtics 41-40 0.506

10

[]: #drops 2016-17 seasons
performance_clean = performance_clean[performance_clean.Year != "2016-17"]

To be able to merge this dataset with the injuries dataset we’re going to group both by team
name and season. The year will reflect this too, and for simplicity we are going to have the same
interpretation where 2015-2016 season corresponds to ‘Season’ 2015. We also will split the record
column into two more additional columns that have ‘Win’ and ‘Loss’ based on the team’s record
that season.

[]: #changes Year column to Season column
performance_clean.rename(columns = {'Year': 'Season'}, inplace = True)

/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:5047:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

errors=errors,

[]: #adds columnn Year using indexing on Season column
def season_to_year(s):

return s.split('-')[0]
performance_clean['Year'] = performance_clean['Season'].astype(str).

↪apply(season_to_year)

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

after removing the cwd from sys.path.

[]: #filters Year column to grab Seasons 2010-2016
performance_clean['Year'] = performance_clean['Year'].astype(int)

performance_clean = performance_clean[2010 <= performance_clean.get('Year')]\
[(performance_clean[2010 <= performance_clean.

↪get('Year')]).get('Year')<=2016]
performance_clean

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-

11

docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

[]: Season Team Record Winning Percentage Year
0 2016-17 Celtics 25-15 0.625 2016
1 2015-16 Celtics 48-34 0.585 2015
2 2014-15 Celtics 40-42 0.488 2014
3 2013-14 Celtics 25-57 0.305 2013
4 2012-13 Celtics 41-40 0.506 2012
… … … … … …
1363 2014-15 Wizards 46-36 0.561 2014
1364 2013-14 Wizards 44-38 0.537 2013
1365 2012-13 Wizards 29-53 0.354 2012
1366 2011-12 * Wizards 20-46 0.303 2011
1367 2010-11-01 00:00:00 Wizards 23-59 0.280 2010

[208 rows x 5 columns]

[]: #cleans irregular values of Season column for the years 2010-11 and 2011-12
def fix_season(s):

if (s == '2011-12 *'):
return '2011-12'

elif (s == datetime.datetime(2010, 11, 1, 0, 0)):
return '2010-11'

else:
return s

performance_clean['Season'] = performance_clean['Season'].apply(fix_season)
#change season to starting year
performance_clean['Season'] = performance_clean['Season'].split('-')[0]
performance_clean['Season'] = performance_clean['Season'].apply(lambda x: int(x.

↪split('-')[0]))

Here, we are adding two more columns: ‘Win’ and ‘Loss’ from extraction of the record column.

[]: def win(s):
return s.split('-')[0]

def loss(s):
return s.split('-')[1]

performance_clean['Win'] = performance_clean['Record'].apply(win)
performance_clean['Loss'] = performance_clean['Record'].apply(loss)
performance_clean.drop(['Record'], axis=1)

[]: Season Team Winning Percentage Year Win Loss
0 2016 Celtics 0.625 2016 25 15
1 2015 Celtics 0.585 2015 48 34
2 2014 Celtics 0.488 2014 40 42
3 2013 Celtics 0.305 2013 25 57

12

4 2012 Celtics 0.506 2012 41 40
… … … … … .. …
1363 2014 Wizards 0.561 2014 46 36
1364 2013 Wizards 0.537 2013 44 38
1365 2012 Wizards 0.354 2012 29 53
1366 2011 Wizards 0.303 2011 20 46
1367 2010 Wizards 0.280 2010 23 59

[208 rows x 6 columns]

[]: unique_team_d1=['Celtics', 'Hawks', 'Blackhawks', 'Nets', 'Hornets', 'Bobcats',
'Bulls', 'Cavaliers', 'Mavericks', 'Nuggets', 'Pistons',
'Warriors', 'Rockets', 'Pacers', 'Clippers', 'Braves', 'Lakers',
'Grizzlies', 'Heat', 'Bucks', 'Timberwolves', 'Pelicans', 'Knicks',
'Thunder', 'Supersonics', 'Magic', '76ers', 'Nationals', 'Suns',
'Trail Blazers', 'Kings', 'Royals', 'Spurs', 'Raptors', 'Jazz',
'Wizards', 'Bullets', 'Zephyrs', 'Packers']

unique_team_d2=['Bulls', 'Pistons', 'Blazers', 'Nets', 'Nuggets', 'Bucks',␣
↪'Kings',
'Bobcats', 'Warriors', 'Suns', 'Heat', 'Thunder', 'Timberwolves',
'Celtics', 'Lakers', 'Rockets', '76ers', 'Cavaliers', 'Clippers',
'Grizzlies', 'Hawks', 'Hornets', 'Jazz', 'Knicks', 'Mavericks',
'Pacers', 'Raptors', 'Spurs', 'Magic', 'Wizards', 'Pelicans',
'Bullets']

d1_as_set = set(unique_team_d1)
intersection = d1_as_set.intersection(unique_team_d2)

unique_teams = list(intersection)
#unique_teams

To combine our two datasets: we will be linking the season columns together. For the injury
dataset, this will be the start year of the season (i.e. 2010), and for the performance dataset, this
will be the range (2010-11).

1.9 Data Analysis & Results
We need to combine all of our data frames together so we’ll be merging them on ‘Season’ and
‘Team’. Our merged data frame will contain the number of relinquished, acquired, and all types of
injuries with the record and other data from our performance dataframe.

[]: injuries2 = pd.merge(grouped_by_team_year, knee, how='left', on=['Season',␣
↪'Team'])

injuries3= pd.merge(injuries2, ankle, how='left', on=['Season', 'Team'])
injuries4 = pd.merge(injuries3, foot, how='left', on=['Season', 'Team'])
injuries5 = pd.merge(injuries4, finger, how='left', on=['Season', 'Team'])
injuries6 = pd.merge(injuries5, back, how='left', on=['Season', 'Team'])

13

injuries7 = pd.merge(injuries6, hand, how='left', on=['Season', 'Team'])
merged_data = pd.merge(injuries7, performance_clean, how='right', on=['Season',␣

↪'Team'])

[]: merged_data['Knee injuries'] = merged_data['Knee injuries'].fillna(0)
merged_data['Ankle injuries'] = merged_data['Ankle injuries'].fillna(0)
merged_data['Foot injuries'] = merged_data['Foot injuries'].fillna(0)
merged_data['Finger injuries'] = merged_data['Finger injuries'].fillna(0)
merged_data['Back injuries'] = merged_data['Back injuries'].fillna(0)
merged_data['Hand injuries'] = merged_data['Hand injuries'].fillna(0)

[]: merged_data

[]: Season Team Acquired Relinquished Knee injuries Ankle injuries \
0 2016 Celtics 50.0 65.0 2.0 8.0
1 2015 Celtics 42.0 52.0 2.0 4.0
2 2014 Celtics 28.0 36.0 1.0 6.0
3 2013 Celtics 6.0 99.0 54.0 26.0
4 2012 Celtics 7.0 46.0 8.0 15.0
.. … … … … … …
203 2014 Wizards 33.0 43.0 3.0 3.0
204 2013 Wizards 13.0 53.0 18.0 2.0
205 2012 Wizards 13.0 99.0 20.0 16.0
206 2011 Wizards 5.0 68.0 18.0 2.0
207 2010 Wizards 42.0 90.0 41.0 5.0

Foot injuries Finger injuries Back injuries Hand injuries Record \
0 0.0 0.0 1.0 0.0 25-15
1 1.0 0.0 2.0 0.0 48-34
2 1.0 1.0 1.0 2.0 40-42
3 0.0 0.0 0.0 0.0 25-57
4 0.0 0.0 2.0 0.0 41-40
.. … … … … …
203 2.0 0.0 3.0 1.0 46-36
204 7.0 3.0 4.0 0.0 44-38
205 5.0 0.0 2.0 12.0 29-53
206 24.0 1.0 1.0 2.0 20-46
207 9.0 2.0 0.0 0.0 23-59

Winning Percentage Year Win Loss
0 0.625 2016 25 15
1 0.585 2015 48 34
2 0.488 2014 40 42
3 0.305 2013 25 57
4 0.506 2012 41 40
.. … … .. …
203 0.561 2014 46 36

14

204 0.537 2013 44 38
205 0.354 2012 29 53
206 0.303 2011 20 46
207 0.280 2010 23 59

[208 rows x 15 columns]

[]: merged_data.sum()

[]: Season 418699
Team CelticsCelticsCelticsCelticsCelticsCelticsCelt…
Acquired 5810.0
Relinquished 12442.0
Knee injuries 1981.0
Ankle injuries 1521.0
Foot injuries 614.0
Finger injuries 127.0
Back injuries 692.0
Hand injuries 184.0
Record 25-1548-3440-4225-5741-4039-2756-2623-1748-346…
Winning Percentage 104.175
Year 418699
Win 2548402541395623486038444044921384449222422483…
Loss 1534425740272617342244382638336144383344582134…
dtype: object

Above is merged_data or one of our main data frames we used for our analysis, which
includes key variables:

• Season
• Acquired (how many injured players returned to the roster in that season)
• Relinquished (total number of the specified injuries per season)
• Injury types:

– knee/ankle/foot/finger/back/hand
• Record
• Winning Percentage

[]: #Plot Winning Percentage (winning vs losing record) over 2010-2015 seasons for␣
↪all teams

#x-axis: Year
#y-axis: Winning Percentage
plt.figure(figsize=(20,15))
sns.lineplot(data=merged_data.drop(columns=['Relinquished']), x = "Year", y =␣

↪"Winning Percentage", hue = "Team").set_title('NBA Teams winning percentage␣
↪2010-2015')

[]: Text(0.5, 1.0, 'NBA Teams winning percentage 2010-2015')

15

The graph above shows how the Winning Percentage (record) for each team changed over the six
seasons we analyzed. It is typical for some teams’ records to stay consistent over a duration because
they have star players under contract or have consistent talent. Other teams may fluctuate due to
losing players during free agency, injury, or trades. This graph is extremely hard to interpret so it
only served as our initial data plot to get us started on our analysis.

[]: #Create Difference variable
#Difference = the current season Winning Percentage of a team minus that team's␣

↪average Winning Percentage
avg = merged_data.groupby(['Team','Season']).sum().get('Winning Percentage')/

↪merged_data.groupby(['Team','Season']).count().get('Winning Percentage')
avg1 = avg.groupby(['Team']).sum()/6
difference = merged_data.drop_duplicates().groupby(['Team','Season']).sum().

↪get('Winning Percentage') - avg1
difference = pd.DataFrame(difference).reset_index().get('Winning Percentage')
merged_data = merged_data.assign(Difference = difference)
merged_data

[]: Season Team Acquired Relinquished Knee injuries Ankle injuries \
0 2016 Celtics 50.0 65.0 2.0 8.0
1 2015 Celtics 42.0 52.0 2.0 4.0

16

2 2014 Celtics 28.0 36.0 1.0 6.0
3 2013 Celtics 6.0 99.0 54.0 26.0
4 2012 Celtics 7.0 46.0 8.0 15.0
.. … … … … … …
203 2014 Wizards 33.0 43.0 3.0 3.0
204 2013 Wizards 13.0 53.0 18.0 2.0
205 2012 Wizards 13.0 99.0 20.0 16.0
206 2011 Wizards 5.0 68.0 18.0 2.0
207 2010 Wizards 42.0 90.0 41.0 5.0

Foot injuries Finger injuries Back injuries Hand injuries Record \
0 0.0 0.0 1.0 0.0 25-15
1 1.0 0.0 2.0 0.0 48-34
2 1.0 1.0 1.0 2.0 40-42
3 0.0 0.0 0.0 0.0 25-57
4 0.0 0.0 2.0 0.0 41-40
.. … … … … …
203 2.0 0.0 3.0 1.0 46-36
204 7.0 3.0 4.0 0.0 44-38
205 5.0 0.0 2.0 12.0 29-53
206 24.0 1.0 1.0 2.0 20-46
207 9.0 2.0 0.0 0.0 23-59

Winning Percentage Year Win Loss Difference
0 0.625 2016 25 15 0.104000
1 0.585 2015 48 34 0.134000
2 0.488 2014 40 42 0.019000
3 0.305 2013 25 57 -0.164000
4 0.506 2012 41 40 -0.176000
.. … … .. … …
203 0.561 2014 46 36 -0.157667
204 0.537 2013 44 38 0.025333
205 0.354 2012 29 53 0.049333
206 0.303 2011 20 46 -0.011667
207 0.280 2010 23 59 0.023333

[208 rows x 16 columns]

[]: #Pairplot of merged_data containing all variables
sns.pairplot(merged_data)
plt.show()

17

The pair plot above shows a combination of the variables from the merged_data dataframe. This
served the purpose of giving us a general idea of what the variables mapped on each other would
look like.

[]: #Exploratory plot: Difference vs. Hand Injury (One such example with Difference)
sns.regplot(data=merged_data, x="Hand injuries", y="Difference").

↪set_title('Number of Hand Injuries vs Difference in Record')

[]: Text(0.5, 1.0, 'Number of Hand Injuries vs Difference in Record')

18

After creating the Difference variable, we plotted and tested what it would look like on a scatter
plot. Originally, we did this to all injury types on separate scatter plots, but we didn’t like what
we observed. Many of these data points were clustered near the y-axis (at x = 0) and for the sake
of our analysis, going forward we decided that it wasn’t the best idea to use Difference as our y
variable. We believed that the Difference variable was tragically flawed in that it didn’t contain
enough data points to be accurately compared. If we were to have conducted our analysis over
many more seasons, we believe this would have been a more useful measurement.

[]: #x-axis: Injury Type
#y-axis: Winning Percentage

fig, axes = plt.subplots(2, 3, figsize=(25, 15))
fig.suptitle('Difference between a team average performance in 2010-2015 with␣

↪certain year performance')
ax=sns.regplot(ax=axes[0, 0],data=merged_data, x="Knee injuries", y="Winning␣

↪Percentage")
ax.set_title("Knee injuries vs. Winning Percentage")
ax=sns.regplot(ax=axes[0, 1],data=merged_data, x="Ankle injuries", y="Winning␣

↪Percentage")
ax.set_title("Ankle injuries vs. Winning Percentage")
ax=sns.regplot(ax=axes[0, 2],data=merged_data, x="Foot injuries", y="Winning␣

↪Percentage")
ax.set_title("Foot injuries vs. Winning Percentage")

19

ax=sns.regplot(ax=axes[1, 0],data=merged_data, x="Finger injuries", y="Winning␣
↪Percentage")

ax.set_title("Finger injuries vs. Winning Percentage")
ax=sns.regplot(ax=axes[1, 1],data=merged_data, x="Back injuries", y="Winning␣

↪Percentage")
ax.set_title("Back injuries vs. Winning Percentage")
ax=sns.regplot(ax=axes[1, 2],data=merged_data, x="Hand injuries", y="Winning␣

↪Percentage")
ax.set_title("Hand injuries vs. Winning Percentage")

f1 = plt.gcf()

These graphs are a continuation of what we attempted to do above. So, we plotted each type
of injury versus the Winning Percentages. From an initial glance, we thought this was much
better than plotting Difference vs. Injury types, however, it wasn’t exactly what we were looking
for. Across the different types of injuries, we observed regression lines that were weak negatives.
As a result, we were happy to at least witness that there were somewhat negative relationships
between the number of injuries and winning percentages. Additionally, here we witnessed a stronger
negative correlation with lower extremity injuries (knee/ankle/foot) than upper extremity injuries
(finger/back/hand).

But we were far from done. Many of these data points were still clustered around the y-axis and
the regression lines did not fit the data well, so as a result, we believed that the outliers could have
skewed the data. Another reason we thought these visualizations weren’t the best was because we

20

felt that we did not have enough data, thus potentially leading to confounds or spurious correlations.

[]: #Exploratory plot: relationship between Winning Percentage and Relinquished␣
↪(the overall number of injuries)

#x-axis: Relinquished
#y-axis: Winning Percentage

sns.set()
sns.set_context('talk')
sns.set_style('whitegrid')

sns.jointplot(x = merged_data['Relinquished'], y = merged_data['Winning␣
↪Percentage'], height = 7, color = 'indigo', alpha = 0.5)

#plt.fig.suptitle("Number of Relinquished Injuries vs Winning Percentage")

[]: <seaborn.axisgrid.JointGrid at 0x7f6a98700f50>

21

According to this graph, we observed that the distribution of Winning Percentage was relatively
normally distributed and the Relinquished variable distribution was rightly skewed. Also, this
scatter plot possessed some outliers in the Relinquished direction of the graph.

In order to better understand if there is a linear relationship that exists, we drew a linear regression
on the scatter plot.

[]: sns.lmplot(x ='Relinquished', y ='Winning Percentage', data = merged_data,␣
↪height = 7)

plt.show()

The graph shows the linear relationship between the total number of injuries (Relinquished) against

22

the Winning Percentage. This plot gave us a better perspective of the weak negative linear rela-
tionship between these two variables.

[]: #create group_merged_data, deleting all injuries and adding net injuries column

grouped_merged_data = merged_data.groupby('Team').sum()
grouped_merged_data['Net_Injuries'] = grouped_merged_data['Relinquished'] -␣

↪grouped_merged_data['Acquired']
grouped_merged_data['Winning Percentage'] = grouped_merged_data['Winning␣

↪Percentage'].apply(lambda x: x/6)

#convert Winning Percentagefrom ratio to actual percentage ~ (0-100)
winningPercentage = [x * 100 for x in grouped_merged_data['Winning Percentage']]
grouped_merged_data = grouped_merged_data.

↪assign(winningPercentage=winningPercentage)
Acquired = grouped_merged_data['Acquired']
Relinquished = grouped_merged_data['Relinquished']
Net_Injuries = grouped_merged_data['Net_Injuries']

Here we create an additional data frame called grouped_merged_data in which we: - Sum the
variables by each team - Create Net_Injuries variable (total number of injured players that didn’t
return to roster) - Alter Winning Percentage to the average and change to a % from 0-100 - Also
created some variables that will be used below

[]: #x-axis: Relinquished ~ (number of players that got injured per team)
#y-axis: Winning Percentage

plt.figure(figsize=(10,8))
plot = sns.regplot(x=Relinquished, y=winningPercentage)
temp = plot.set_ylabel("Winning Percentage", fontsize = 20)
temp = plot.set_xlabel("Relinquished", fontsize = 20)

23

The graph above shows the relationship between the total number of injuries (Relinquished) against
their win percentage. There was a good balance between those who had a good season vs bad season
with the same number of injuries. We can see this goes against what we thought: we have a positive
slope here.

[]: #x-axis: Acquired ~ (number of players who got injured and returned to roster)
#y-axis: Winning Percentage

plt.figure(figsize=(10,8))
plot = sns.regplot(x=Acquired, y=winningPercentage)
temp = plot.set_ylabel("Winning Percentage", fontsize = 20)
temp = plot.set_xlabel("Acquired", fontsize = 20)

24

The graph above shows the relationship between the total number of players returning from injuries
(Acquired) against their win percentage. Teams that got more players back from injury ended up
having better records.

[]: #x-axis: Net_Injuries ~ (number of players that got injured and didn't return␣
↪to roster that season)

#y-axis: Winning Percentage

plt.figure(figsize=(10,8))
plot = sns.regplot(x=Net_Injuries, y=winningPercentage)
temp = plot.set_ylabel("Winning Percentage", fontsize = 20)
temp = plot.set_xlabel("Net Injuries", fontsize = 20)
#plt.grid()

25

The graph above shows the relationship between the difference between Relinquished and Acquired
against their win percentage. Teams that got less players back from injury (large x axis values)
ended up having a worse record, but the best fit line is not very strong; there are many outliers
and the error would be pretty high.

We then run OLS regression models individually on Relinquished and Acquired to see if there exists
a significant relationship with the Winning Percentage.

[]: # Are the amount of injuries in a team correlated to the winning percentage␣
↪over all years?

The summary shows that it is not at all.
outcome, predictors = patsy.dmatrices('winningPercentage ~ Relinquished')
mod = sm.OLS(outcome, predictors)
res = mod.fit()
print(res.summary())

OLS Regression Results
==
Dep. Variable: winningPercentage R-squared: 0.036
Model: OLS Adj. R-squared: 0.003

26

Method: Least Squares F-statistic: 1.090
Date: Sun, 05 Jun 2022 Prob (F-statistic): 0.305
Time: 20:42:45 Log-Likelihood: -126.91
No. Observations: 31 AIC: 257.8
Df Residuals: 29 BIC: 260.7
Df Model: 1
Covariance Type: nonrobust
==

coef std err t P>|t| [0.025 0.975]
--
Intercept 45.7465 10.190 4.489 0.000 24.906 66.587
Relinquished 0.0256 0.024 1.044 0.305 -0.025 0.076
==
Omnibus: 1.379 Durbin-Watson: 1.691
Prob(Omnibus): 0.502 Jarque-Bera (JB): 0.962
Skew: -0.053 Prob(JB): 0.618
Kurtosis: 2.143 Cond. No. 1.57e+03
==

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.
[2] The condition number is large, 1.57e+03. This might indicate that there are
strong multicollinearity or other numerical problems.

In the above linear regression model, we only use one variable ‘Relinquished’ to predict the winning
percentage. From the result, the coefficient is 0.0256, which is close to 0. The p-value is 0.305,
which is bigger than the significant level of 0.05. Hence, we fail to reject the null hypothesis and
can conclude that there is no significant relationship, and that Relinquished alone might not be a
good model to predict the winning percentage.

[]: # Is the amount of players a team acquired correlated to the winning percentage␣
↪over all years?

The summary shows that this is slightly more probably, but there is no␣
↪significant correlation.

outcome, predictors = patsy.dmatrices('winningPercentage ~ Acquired')
mod = sm.OLS(outcome, predictors)
res = mod.fit()
print(res.summary())

OLS Regression Results
==
Dep. Variable: winningPercentage R-squared: 0.322
Model: OLS Adj. R-squared: 0.299
Method: Least Squares F-statistic: 13.79
Date: Sun, 05 Jun 2022 Prob (F-statistic): 0.000867
Time: 20:42:46 Log-Likelihood: -121.45
No. Observations: 31 AIC: 246.9

27

Df Residuals: 29 BIC: 249.8
Df Model: 1
Covariance Type: nonrobust
==

coef std err t P>|t| [0.025 0.975]
--
Intercept 30.8418 7.145 4.317 0.000 16.229 45.454
Acquired 0.1343 0.036 3.713 0.001 0.060 0.208
==
Omnibus: 1.771 Durbin-Watson: 1.687
Prob(Omnibus): 0.413 Jarque-Bera (JB): 1.589
Skew: 0.516 Prob(JB): 0.452
Kurtosis: 2.593 Cond. No. 625.
==

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.

In the above linear regression model, we only use one variable ‘Acquired’, which means the number
of injured players returning to the game, to predict the winning percentage. From the result, the
coefficient is 0.1343, which means for every returning player that recovered from their injuries, the
winning percentage increased by 0.1343. The p-value is 0.001, which is smaller than the significant
level of 0.05. Hence, we reject the null hypothesis and conclude that there is a significant relationship
by convention; thus, we should consider the variable Acquired in our model.

[]: knee = grouped_merged_data['Knee injuries']
ankle = grouped_merged_data['Ankle injuries']
foot = grouped_merged_data['Foot injuries']
finger = grouped_merged_data['Finger injuries']
back = grouped_merged_data['Back injuries']
hand = grouped_merged_data['Hand injuries']

outcome_1, predictors_1 = patsy.dmatrices('winningPercentage ~ Acquired + knee␣
↪+ ankle + foot + finger + back + hand')

mod_1 = sm.OLS(outcome_1, predictors_1)
res_1 = mod_1.fit()
print(res_1.summary())

OLS Regression Results
==
Dep. Variable: winningPercentage R-squared: 0.630
Model: OLS Adj. R-squared: 0.517
Method: Least Squares F-statistic: 5.594
Date: Sun, 05 Jun 2022 Prob (F-statistic): 0.000736
Time: 20:42:46 Log-Likelihood: -112.07
No. Observations: 31 AIC: 240.1
Df Residuals: 23 BIC: 251.6

28

Df Model: 7
Covariance Type: nonrobust
==

coef std err t P>|t| [0.025 0.975]
--
Intercept 44.1045 7.139 6.178 0.000 29.336 58.873
Acquired 0.1625 0.035 4.592 0.000 0.089 0.236
knee -0.1050 0.083 -1.263 0.219 -0.277 0.067
ankle -0.1377 0.120 -1.148 0.263 -0.386 0.110
foot -0.2343 0.169 -1.387 0.179 -0.584 0.115
finger -0.9764 0.423 -2.306 0.030 -1.852 -0.101
back -0.0658 0.212 -0.310 0.759 -0.505 0.373
hand 0.8465 0.353 2.399 0.025 0.117 1.577
==
Omnibus: 1.390 Durbin-Watson: 1.900
Prob(Omnibus): 0.499 Jarque-Bera (JB): 0.552
Skew: -0.283 Prob(JB): 0.759
Kurtosis: 3.327 Cond. No. 820.
==

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.

In the above model, we explore if the variables of different types of injuries and the Acquired
together can form a linear model to predict the winning percentage. Here, we see that we have
very small p-values for the acquired. This supports the claim that people that have more people
returning from injuries have a better winning percentage. This does not support our hypothesis
that the more injured players a team has, the lower the team’s winning percentage will be since
the coefficient for the hand injuries variable is positive.

[]: #take a look at the distribution of hand injuries to see why the coefficient in␣
↪the model is positive

sns.distplot(grouped_merged_data['Hand injuries'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619:
FutureWarning: `distplot` is a deprecated function and will be removed in a
future version. Please adapt your code to use either `displot` (a figure-level
function with similar flexibility) or `histplot` (an axes-level function for
histograms).

warnings.warn(msg, FutureWarning)

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5680e3a690>

29

[]: #ignore Season and Year
grouped_merged_data

[]: Season Acquired Relinquished Knee injuries Ankle injuries \
Team
76ers 14091 165.0 384.0 79.0 40.0
Bobcats 8046 93.0 276.0 59.0 42.0
Bucks 14091 178.0 551.0 100.0 85.0
Bulls 14091 182.0 405.0 48.0 43.0
Cavaliers 14091 233.0 499.0 83.0 77.0
Celtics 14091 188.0 452.0 97.0 82.0
Clippers 14091 155.0 363.0 44.0 23.0
Grizzlies 14091 170.0 325.0 55.0 39.0
Hawks 14091 233.0 438.0 47.0 49.0
Heat 14091 280.0 440.0 59.0 38.0
Hornets 12078 144.0 376.0 100.0 52.0
Jazz 14091 174.0 404.0 72.0 46.0
Kings 14091 178.0 336.0 28.0 37.0
Knicks 10060 117.0 338.0 74.0 39.0
Lakers 14091 189.0 506.0 96.0 34.0
Magic 14091 178.0 445.0 46.0 76.0
Mavericks 14091 257.0 423.0 65.0 25.0
Nets 14091 215.0 515.0 43.0 75.0

30

Nuggets 14091 250.0 522.0 118.0 80.0
Pacers 14091 220.0 355.0 39.0 43.0
Pelicans 8058 103.0 255.0 84.0 36.0
Pistons 14091 142.0 313.0 39.0 43.0
Raptors 14091 256.0 467.0 77.0 78.0
Rockets 14091 208.0 488.0 87.0 54.0
Spurs 14091 349.0 555.0 41.0 31.0
Suns 14091 158.0 290.0 36.0 47.0
Thunder 14091 201.0 312.0 36.0 16.0
Timberwolves 14091 162.0 509.0 84.0 98.0
Trail Blazers 14091 0.0 0.0 0.0 0.0
Warriors 14091 235.0 436.0 35.0 56.0
Wizards 14091 197.0 464.0 110.0 37.0

Foot injuries Finger injuries Back injuries Hand injuries \
Team
76ers 26.0 9.0 13.0 1.0
Bobcats 10.0 0.0 10.0 2.0
Bucks 59.0 2.0 30.0 13.0
Bulls 24.0 2.0 25.0 1.0
Cavaliers 12.0 6.0 35.0 3.0
Celtics 4.0 2.0 9.0 2.0
Clippers 13.0 0.0 19.0 15.0
Grizzlies 24.0 1.0 18.0 22.0
Hawks 9.0 1.0 43.0 0.0
Heat 20.0 4.0 13.0 7.0
Hornets 17.0 3.0 15.0 4.0
Jazz 17.0 6.0 22.0 0.0
Kings 13.0 5.0 25.0 1.0
Knicks 41.0 5.0 12.0 2.0
Lakers 17.0 0.0 28.0 0.0
Magic 42.0 0.0 20.0 4.0
Mavericks 14.0 4.0 18.0 4.0
Nets 35.0 0.0 55.0 5.0
Nuggets 8.0 0.0 32.0 0.0
Pacers 12.0 0.0 40.0 0.0
Pelicans 4.0 9.0 8.0 2.0
Pistons 23.0 0.0 25.0 6.0
Raptors 14.0 6.0 28.0 5.0
Rockets 23.0 1.0 39.0 4.0
Spurs 12.0 8.0 24.0 9.0
Suns 8.0 2.0 6.0 3.0
Thunder 15.0 2.0 16.0 5.0
Timberwolves 32.0 40.0 27.0 45.0
Trail Blazers 0.0 0.0 0.0 0.0
Warriors 18.0 3.0 22.0 4.0
Wizards 48.0 6.0 15.0 15.0

31

Winning Percentage Year Difference Net_Injuries \
Team
76ers 0.396000 14091 -0.692167 219.0
Bobcats 0.216833 8046 -1.037833 183.0
Bucks 0.485000 14091 -0.506500 373.0
Bulls 0.707833 14091 0.145500 223.0
Cavaliers 0.550000 14091 -1.013500 266.0
Celtics 0.630500 14091 -0.396000 264.0
Clippers 0.724500 14091 0.494333 208.0
Grizzlies 0.703833 14091 -0.556333 155.0
Hawks 0.672500 14091 0.338667 205.0
Heat 0.703667 14091 -0.423667 160.0
Hornets 0.451167 12078 -0.671000 232.0
Jazz 0.574167 14091 -0.758833 230.0
Kings 0.406000 14091 -0.770500 158.0
Knicks 0.395667 10060 0.434167 221.0
Lakers 0.498333 14091 -0.521667 317.0
Magic 0.473667 14091 -0.588833 267.0
Mavericks 0.633500 14091 -0.476500 166.0
Nets 0.449000 14091 -0.450500 300.0
Nuggets 0.584500 14091 -0.794833 272.0
Pacers 0.649833 14091 -0.443500 135.0
Pelicans 0.286000 8058 -0.423000 152.0
Pistons 0.474500 14091 -0.237000 171.0
Raptors 0.588833 14091 -0.607000 211.0
Rockets 0.692167 14091 -0.301167 280.0
Spurs 0.874000 14091 -0.396667 206.0
Suns 0.495833 14091 -0.874000 132.0
Thunder 0.770500 14091 -0.474500 111.0
Timberwolves 0.396667 14091 -0.654000 347.0
Trail Blazers 0.607000 14091 -0.495833 0.0
Warriors 0.758833 14091 -0.947167 201.0
Wizards 0.511667 14091 -0.511667 267.0

winningPercentage
Team
76ers 39.600000
Bobcats 21.683333
Bucks 48.500000
Bulls 70.783333
Cavaliers 55.000000
Celtics 63.050000
Clippers 72.450000
Grizzlies 70.383333
Hawks 67.250000
Heat 70.366667

32

Hornets 45.116667
Jazz 57.416667
Kings 40.600000
Knicks 39.566667
Lakers 49.833333
Magic 47.366667
Mavericks 63.350000
Nets 44.900000
Nuggets 58.450000
Pacers 64.983333
Pelicans 28.600000
Pistons 47.450000
Raptors 58.883333
Rockets 69.216667
Spurs 87.400000
Suns 49.583333
Thunder 77.050000
Timberwolves 39.666667
Trail Blazers 60.700000
Warriors 75.883333
Wizards 51.166667

[]: grouped_merged_data[grouped_merged_data['Hand injuries'] > 40]

[]: Season Acquired Relinquished Knee injuries Ankle injuries \
Team
Timberwolves 14091 162.0 509.0 84.0 98.0

Foot injuries Finger injuries Back injuries Hand injuries \
Team
Timberwolves 32.0 40.0 27.0 45.0

Winning Percentage Year Difference Net_Injuries \
Team
Timberwolves 0.396667 14091 -0.654 347.0

winningPercentage
Team
Timberwolves 39.666667

One of the possible reasons this phenomenon occurs is that we do not have enough data points. In
fact, out of the 12,442 injury data points that we had, only 5,119 were categorized into the 6 groups
we see above. Therefore, the remaining half of the injuries could potentially play a significantly
greater impact than the ones listed above. Head trauma, back fractures, and other serious but less
frequently occurring injuries will probably be more predictive simply due to their severe nature.

When it comes to the categories we do have, we can see that the distribution of Hand Injuries above
is not normally distributed and contains outliers. On this graph one team had 44 hand injuries

33

while most of the teams had less than 10. Hence, it is possible that the team with large amounts
of hand injuries are a strong team by coincidence and therefore have a greater winning percentage,
which might influence the result of the model.

Since Acquired means how many players come back from injuries and Relinquished means the total
amount of injuries of all types, we want to consider both of them simultaneously. Due to the nature
of the variables, we try to combine Acquired and Relinquished in our model.

Here we construct a multivariate linear regression model.

[]: outcome_2, predictors_2 = patsy.dmatrices('winningPercentage ~␣
↪Acquired+Relinquished')

mod_2 = sm.OLS(outcome_2, predictors_2)
res_2 = mod_2.fit()
print(res_2.summary())

OLS Regression Results
==
Dep. Variable: winningPercentage R-squared: 0.471
Model: OLS Adj. R-squared: 0.433
Method: Least Squares F-statistic: 12.46
Date: Sun, 05 Jun 2022 Prob (F-statistic): 0.000135
Time: 20:42:46 Log-Likelihood: -117.61
No. Observations: 31 AIC: 241.2
Df Residuals: 28 BIC: 245.5
Df Model: 2
Covariance Type: nonrobust
==

coef std err t P>|t| [0.025 0.975]
--
Intercept 42.7885 7.709 5.551 0.000 26.997 58.580
Acquired 0.2441 0.051 4.795 0.000 0.140 0.348
Relinquished -0.0810 0.029 -2.804 0.009 -0.140 -0.022
==
Omnibus: 0.309 Durbin-Watson: 1.475
Prob(Omnibus): 0.857 Jarque-Bera (JB): 0.486
Skew: 0.060 Prob(JB): 0.784
Kurtosis: 2.399 Cond. No. 1.74e+03
==

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.
[2] The condition number is large, 1.74e+03. This might indicate that there are
strong multicollinearity or other numerical problems.

The above linear regression model is consistent with what we assumed. As we assumed, more
acquired (players returning from injuries) would increase the winning percentage; while more re-
linquished (total number of players who got injured) would decrease the winning percentage. Both

34

variables have a p-value smaller than the significance level 0.05, hence we can reject the null hy-
pothesis and conclude that there exists a significant relationship between acquired + relinquished
with winning percentage by convention.

Now we have two linear regression models that we want to consider: - mod_1: that takes ‘Acquired
+ knee + ankle + foot + finger + back + hand’ as variables to predict the winning percentage and
- mod_2: that only takes ‘Acquired + Relinquished’

We will evaluate the model by using Train/Test split to calculate the root of mean squared error.
The model with a smaller root of mean squared error will be considered as a better prediction for
winning percentage.

[]: #calculate the RMSE from mod_1
X = grouped_merged_data[['Acquired','Finger injuries','Hand injuries',

'Knee injuries', 'Ankle injuries', 'Foot␣
↪injuries','Back injuries']]

y = grouped_merged_data['winningPercentage']

Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=3)

Instantiate model
lm2 = LinearRegression()

Fit Model
lm2.fit(X_train, y_train)

Predict
y_pred = lm2.predict(X_test)

RMSE
print(np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

20.806928184333792

[]: #calculate the RMSE from mod_2
X = grouped_merged_data[['Acquired', 'Relinquished']]
y = grouped_merged_data['winningPercentage']

Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=3)

Instantiate model
lm2 = LinearRegression()

Fit Model
lm2.fit(X_train, y_train)

Predict

35

y_pred = lm2.predict(X_test)

RMSE
print(np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

10.861318226985368

From the above results, we find out that mod_2 has a smaller root mean squared error. This result
supports our interpretation of the models because mod_2 shows more relinquish(injuries) decreases
winning percentage and more acquired(players coming back) will increase the winning percentage.
Also, both two parameters in mod_2 have a p-value that is smaller than the significant level, which
means there exists a significant relationship, while mod_1 does not. Therefore, we can conclude
that mod_2 is more appropriate than mod_1.

[]: def predict_model_2(acquired, relinquished):
predict_y = []
for idx in range(len(acquired)):

a = acquired[idx]
r = relinquished[idx]
predict_winning_percent = 42.7885 + 0.2441*a - 0.0810*r
predict_y.append(predict_winning_percent)

return predict_y

a = list(grouped_merged_data['Acquired'])
r = list(grouped_merged_data['Relinquished'])
y_true = list(grouped_merged_data['winningPercentage'])
y_pred_2 = predict_model_2(a,r)

[]: sns.distplot(y_pred_2)
sns.distplot(y_true)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619:
FutureWarning: `distplot` is a deprecated function and will be removed in a
future version. Please adapt your code to use either `displot` (a figure-level
function with similar flexibility) or `histplot` (an axes-level function for
histograms).

warnings.warn(msg, FutureWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619:
FutureWarning: `distplot` is a deprecated function and will be removed in a
future version. Please adapt your code to use either `displot` (a figure-level
function with similar flexibility) or `histplot` (an axes-level function for
histograms).

warnings.warn(msg, FutureWarning)

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f6a940a70d0>

36

The above distribution graph shows the distribution for the value of predicted winning percentage
(blue) and the true value of winning percentage from 2010-2015 (orange).

Both distribution graphs show roughly normal with similar mean located at the center. However,
the True winning percentage curve is more spread out than the predicted winning percentage curve.

[]: injury2016 = injury_original[injury_original['Season']==2016]
injury2016 = injury2016.groupby(['Team']).count().drop(columns=['Date',␣

↪'Notes', 'Season'])
injury2016['pred_win_percent'] = 42.7885 + (6*0.2441*injury2016['Acquired']) -␣

↪(6*0.0810*injury2016['Relinquished'])
injury2016['2016_win_percent'] = [34.1, 50.0, 51.2, 50.0, 62.2, 64.6, 62.2, 52.

↪4, 52.4, 50.0, 43.9, 62.2, 39.0, 37.8, 31.7, 35.4, 40.2, 24.4, 48.8, 51.2,␣
↪41.5, 45.1, 62.2, 67.1, 74.4, 29.3, 57.3, 37.8, 81.7, 59.8]

injury2016['difference'] =␣
↪abs(injury2016['2016_win_percent']-injury2016['pred_win_percent'])

injury2016

[]: Acquired Relinquished pred_win_percent 2016_win_percent \
Team
76ers 40 72 66.3805 34.1
Blazers 27 47 59.4907 50.0
Bucks 37 52 71.7067 51.2
Bulls 55 70 89.3215 50.0
Cavaliers 47 64 80.5207 62.2

37

Celtics 50 65 84.4285 64.6
Clippers 25 41 59.4775 62.2
Grizzlies 48 60 83.9293 52.4
Hawks 35 56 66.8335 52.4
Heat 33 48 67.7923 50.0
Hornets 40 54 75.1285 43.9
Jazz 47 72 76.6327 62.2
Kings 40 57 73.6705 39.0
Knicks 60 80 91.7845 37.8
Lakers 57 74 90.3067 31.7
Magic 33 37 73.1383 35.4
Mavericks 50 73 80.5405 40.2
Nets 48 68 80.0413 24.4
Nuggets 63 91 90.8323 48.8
Pacers 43 61 76.1203 51.2
Pelicans 34 51 67.7989 41.5
Pistons 34 43 71.6869 45.1
Raptors 37 49 73.1647 62.2
Rockets 47 63 81.0067 67.1
Spurs 86 113 113.8261 74.4
Suns 37 58 68.7907 29.3
Thunder 23 36 58.9783 57.3
Timberwolves 18 31 54.0853 37.8
Warriors 66 88 96.6841 81.7
Wizards 43 50 81.4663 59.8

difference
Team
76ers 32.2805
Blazers 9.4907
Bucks 20.5067
Bulls 39.3215
Cavaliers 18.3207
Celtics 19.8285
Clippers 2.7225
Grizzlies 31.5293
Hawks 14.4335
Heat 17.7923
Hornets 31.2285
Jazz 14.4327
Kings 34.6705
Knicks 53.9845
Lakers 58.6067
Magic 37.7383
Mavericks 40.3405
Nets 55.6413
Nuggets 42.0323

38

Pacers 24.9203
Pelicans 26.2989
Pistons 26.5869
Raptors 10.9647
Rockets 13.9067
Spurs 39.4261
Suns 39.4907
Thunder 1.6783
Timberwolves 16.2853
Warriors 14.9841
Wizards 21.6663

We will try to use our equation from 2010-2015 data to predict the winning percentages from 2016.
The above data frame shows the number of Acquired and Relinquished players for each team for
the 2016 season. It then predicts the win percentages based on these numbers. It also shows the
True win percentages from the 2016 season as well as the differences between them to see how close
our predictions were.

[]: sns.distplot(injury2016['pred_win_percent']) #blue
sns.distplot(injury2016['2016_win_percent']) #orange
plt.xlabel('winning percentage')

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619:
FutureWarning: `distplot` is a deprecated function and will be removed in a
future version. Please adapt your code to use either `displot` (a figure-level
function with similar flexibility) or `histplot` (an axes-level function for
histograms).

warnings.warn(msg, FutureWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619:
FutureWarning: `distplot` is a deprecated function and will be removed in a
future version. Please adapt your code to use either `displot` (a figure-level
function with similar flexibility) or `histplot` (an axes-level function for
histograms).

warnings.warn(msg, FutureWarning)

[]: Text(0.5, 0, 'winning percentage')

39

The above distribution graph shows the distribution for the value of predicted winning percentage
(blue) and the true value of winning percentage from 2016 (orange).

[]: x = injury2016['pred_win_percent']
y = injury2016['2016_win_percent']

In order to see if our model works, we use the selected model to predict the winning percentage. -
x: the predicted winning percentage for 2016 by using our linear regression model. - y: the true
winning percentage of teams in 2016

If we want to see if our model works, we need to compare the distribution of the predicted winning
percentage for 2016 with the true winning percentage in 2016. Therefore, we use a two-sample
Kolmogorov-Smirnov test, which is included in the scipy.stats in order to compare the two distri-
butions.

Under the null hypothesis, the two distributions are identical, which means our model can efficiently
predict the winning percentage in 2016. If the K-S statistic is small or the p-value is higher than the
significance level 0.05, then we fail to reject the hypothesis and we conclude that the distributions
of the predicted winning percentage and the true winning percentage are the same. Conversely, if
p-value is smaller than 0.05, then we can reject the null hypothesis and that implies that our model
does not correctly predict the winning percentage.

[]: ks_2samp(x, y)

[]: Ks_2sampResult(statistic=0.7666666666666667, pvalue=6.531235554884833e-09)

40

From the result above, we have a p-value smaller than the significance level 0.05. Therefore, we
reject the null hypothesis and conclude that the predicted winning percentage for 2016 by using
our linear regression model is not the same distribution as the true winning percentage in 2016.

1.10 Ethics & Privacy
We got our data from Kaggle and information made public by the NBA. With the topic we
chose, there is not really much of a privacy concern to worry about since all of the data par-
ticipants/subjects are professional basketball players and teams whose information is knowingly
and voluntarily public. Therefore, there is no reason or need to use some sort of ID number to hide
the players’ privacy. We will do our best to make sure we explain all the analysis we conduct and
how we conduct it in order to be as transparent as possible.

1.11 Conclusion & Discussion
In closing, we can confidently conclude that there does exist a relationship between an NBA team’s
number and injuries in general. The higher the number of acquired players from injuries, the better
a team’s winning percentage will be. This is clearly depicted in the small mean squared error above
between the acquired, relinquished, and injured categories and the miniscule p-value between the
acquired and winning percentage categories in the OLS regression. We did notice that of our 6
labeled injury types, the 3 lower extremity injury categories had a stronger negative correlation
with winning percentage than the upper extremity injuries. However, due to a lack of data, our
analysis was not able to thoroughly conclude if the type of the injury is actually relevant to a team’s
winning record.

Despite these findings, there were several limitations with our approach. The first and foremost one
is the categorization of the injury data. This task required some natural language processing and
splitting the injuries into the broadest groups possible (i.e. hand, foot, ankle, etc.). Unfortunately,
roughly half of the data remained uncategorized and simply part of the relinquished category. While
more categories could have been added, our team decided not to move forth with this idea since
the proposed categories contained less than a hundred injuries; such few data points would not be
useful in any meaningful analysis. In fact, this leads into our second limitation: the small amount
of data in the existing categories. As described in our analysis, the category “Hand Injuries” had
184 injuries in total for example, but 44 of them came from the Timberwolves team alone! The
main reason for such large variation is the limited number of data from the datasets available to us.
Our analysis relied on historical team performance and player injuries; therefore, we had to have
both available for a given season in order to include that season. This led to us using only seasons
2010-2020, and with 82 games a year per team, this equated to 820 games for every team over that
decade. While this seems like a reasonable amount of data, only the games that produced injuries
would be included, and only the identifiable injuries would be included and further filtered down
further into their respective categories. This is what ultimately led to a shortage of data for some
of the injury categories.

Due to the difficulty of categorization and the overall shortage of data, our results cannot completely
dismiss the impact of certain types of injuries on a team’s number (their winning percentage).
Therefore, while acquired injuries certainly play a role, only an analysis without these limitations
could say for certain how the type of injury contributes to a team’s number.

41

1.12 Team Contributions
Connor McManigal: summarized results, background info, hypothesis, data cleaning of original
datasets, and helped with plotting

Matthew Cohen: ethics and privacy, summarized plot results, modeled and tested how accurate
our data is at predicting future seasons

Egor Pustovalov: conclusion & discussion, constructed original OLS models, helped with data
cleaning and data visualization

Xuwen Yan(Ella): constructed and ran the linear regression models, overview, compared models
with different parameters, helped with interpreting the results.

Ryan Swartz: cleaned the datasets, summarized data cleaning, constructed plots, organized setup
and group collaboration

42

	Effect of NBA Injuries on Team Performance
	Names
	Research Question
	Background and Prior Work
	Hypothesis
	Setup
	Data Cleaning
	First Dataset - Injury Stats
	Link to Dataset: https://www.kaggle.com/datasets/ghopkins/nba-injuries-2010-2018
	No. Observations: 17,408

	Second Dataset - Historical NBA Performance
	Link to Dataset: https://data.world/gmoney/nba-team-records-by-year
	No. Observations: 208

	Data Analysis & Results
	Ethics & Privacy
	Conclusion & Discussion
	Team Contributions

